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1 Introduction

Stein’s method was invented in early 70s by Charles Stein as a method for proving central
limit theorems.

1.1 Convergence in distribution

The cumulative distribution function of a random variable X is defined as

F (t) := P(X ≤ t).

Suppose we have a sequence of r.v. {Xn} with c.d.f. {Fn} and a r.v. X with c.d.f. X. We
say that Xn converges in distribution (or converges in law, or converges weakly) to X if

lim
n→∞

Fn(t) = F (t) for all continuity points t of F .

This is denoted by Xn =⇒ X or Fn =⇒ F or Xn =⇒ F . The following theorem is standard.

Theorem 1 The following are equivalent:

1. Xn =⇒ X

2. E f(Xn)→ E f(X) for all bounded continuous f

3. E f(Xn)→ E f(X) for all bounded Lipschitz f

4. E
(
eitXn

)
→ E eitX for all t

Recall that the function ϕ(t) := E(eitX) is known as the characteristic function of X.
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1.2 Central limit theorems

Recall: The standard gaussian distribution N(0, 1) has density

ϕ(x) =
e−x

2/2

√
2π

.

We will usually denote standard gaussian r.v. by Z.

Basic central limit theorem: If X1, X2, . . . iid r.v. with mean 0 variance 1 then∑n
i=1Xi√
n

=⇒ N(0, 1).

One standard method of proof uses characteristic functions.

E
[
eit

∑n
1 Xi/

√
n
]

= E
[
eit

∑n
1 Xi/

√
n
]n

=

[
1 +

it√
n

EX +
(it)2

2n
EX2 + · · ·

]n
≈
(

1− t2

2n

)n
→ e−t

2/2 = E
(
eitZ

)
.

1.3 Some examples that we will cover

We will apply Stein’s method to situations where it’s hard to apply standard arguments.
Some examples are as follows.

Hoeffding’s combinatorial CLT

Suppose π is a random (uniform) permutation of {1, . . . , n}, and consider the following
distance from identity:

Wn =

n∑
i=1

|i− π(i)|

This is known as Spearman’s footrule.

Known result: As n becomes large,

Wn −EWn√
Var(Wn)

=⇒ N(0, 1).

More generally, we have Hoeffding’s combinatorial CLT.

1-2



• Array of numbers (aij)i≤i,j≤n satisfying certain conditions.

• π a random permutation

• Wn =
∑

i aiπ(i) (for spearman, aij = |i− j|)

How close is Wn−EWn√
Var(Wn)

to N(0, 1)? This was Stein’s original motivation.

Linear statistics of eigenvalues

Suppose (Xij)1≤i,j≤n are iid rv’s with mean 0 and variance 1, Xji = Xij . Then

An =
1√
n

(Xij)

is known as a Wigner matrix. Let λ1, . . . , λn be the eigenvalues of An. Then it is known
that

1

n

n∑
i=1

δλi =⇒ semicircle law

which has density
1

2π

√
4− x2

on [−2, 2].

We may want to look at fluctations of random distribution about a fixed distribution.

Look at Wn =
∑n

i=1 f(λi).

Then Wn −EWn =⇒ N(0, σ2(f)). Main restrictions needed:

1. E
(
X2m
ij

)
≤ (Cm)m for all m.

2. Xij ’s have symmetric distribution around zero; not needed to be iid.

Original proof is by method of moments.

Curie-Weiss Model

• N magnetic particles, each with spin +1 or −1.

• Spins denoted by σ1, . . . , σN .
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• The particles try to align themselves together with the same spin.

• Simplest model [mean-field model]: P (σ) = Z−1 exp
(
β
n

∑
1≤i<j≤n σiσj

)
where β =

1/kT with T being the temperature and k the Boltzmann constant.

• The magnetization of the system

m(σ) =
1

n

∑
σi

If β = 0, then we have iid, and magnetization is close to 0.

• Known that for β ≤ 1, m(σ)→ 0 in probability as n→∞.

• For β > 1, the equation x = tanh(βx) has two solutions, m∗(β) and −m∗(β), say
m∗ > 0 and

m(σ) =⇒ 1

2

(
δm∗(β) + δ−m∗(β)

)
.

• If β < 1, then √
nm(σ) =⇒ N(0, ?)

• The model has a phase transition at β = 1. If β = 1, then

n1/4m(σ) =⇒ the distribution with density ∝ e−x4/12.

Sherrington-Kirkpatrick Model

Spin glass model for N spins.

P (σ) = Z−1 exp

 β√
N

∑
1≤i<j≤N

gijσiσj + h
∑

σi


where gij is a fixed realization of iid N(0, 1). The idea is that some particles try to align in
the same direction, and some repel each other.

We will prove various results about this model using Stein’s method.

If h = 0, it is known that β = 1 is the critical temperature.

Overlap: generate two vectors, σ1 and σ2 independently from the Gibbs measure.

R1,2 =
1

N

N∑
i=1

σ1i σ
2
i

It is known that R1,2 = O( 1√
N

) if β < 1.

Open question: What is the magnitude of R1,2 at β = 1?
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2 Distances between probability measures

Stein’s method often gives bounds on how close distributions are to each other.

A typical distance between probability measures is of the type

d(µ, ν) = sup

{∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ : f ∈ D
}
,

where D is some class of functions.

2.1 Total variation distance

Let B denote the class of Borel sets. The total variation distance between two probability
measures µ and ν on R is defined as

TV(µ, ν) := sup
A∈B
|µ(A)− ν(A)| .

Here
D = {1A : A ∈ B} .

Note that this ranges in [0, 1]. Clearly, the total variation distance is not restricted to the
probability measures on the real line, and can be defined on arbitrary spaces.

2.2 Wasserstein distance

This is also known as the Kantorovich-Monge-Rubinstein metric.

Defined only when probability measures are on a metric space.

Wass(µ, ν) := sup

{∣∣∣∣∫ f dµ−
∫
f dν

∣∣∣∣ : f is 1-Lipschitz

}
,

i.e. sup over all f s.t. |f(x)− f(y)| ≤ d(x, y), d being the underlying metric on the space.
The Wasserstein distance can range in [0,∞].
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2.3 Kolmogorov-Smirnov distance

Only for probability measures on R.

Kolm(µ, ν) := sup
x∈R
|µ ((−∞, x])− ν ((−∞, x])|

≤ TV(µ, ν).

2.4 Facts

• All three distances defined above are stronger than weak convergence (i.e. convergence
in distribution, which is weak* convergence on the space of probaility measures, seen
as a dual space). That is, if any of these metrics go to zero as n→∞, then we have
weak convergence. But converse is not true. However, weak convergence is metrizable
(e.g. by the Prokhorov metric).

• Important coupling interpretation of total variation distance:

TV (µ, ν) = inf {P (X 6= Y ) : (X,Y ) is a r.v. s.t. X ∼ µ, Y ∼ ν}

(i.e. infimum over all joint distributions with given marginals.)

• Similarly, for µ, ν on the real line,

Wass(µ, ν) = inf {E |X − Y | : (X,Y ) is a r.v. s.t. X ∼ µ, Y ∼ ν}

(So it’s often called the Wass1, because of L1 norm.)

• TV is a very strong notion, often too strong to be useful. Suppose X1, X2, . . . iid ±1.
Sn =

∑n
1 Xi. Then

Sn√
n

=⇒ N(0, 1)

But TV ( Sn√
n
, Z) = 1 for all n. Both Wasserstein and Kolmogorov distances go to 0 at

rate 1/
√
n.

Lemma 2 Suppose W,Z are two r.v.’s and Z has a density w.r.t. Lebesgue measure bounded
by a constant C. Then Kolm(W,Z) ≤ 2

√
CWass(W,Z).

Proof: Consider a point t, and fix an ε. Define two functions g1 and g2 as follows. Let
g1(x) = 1 on (−∞, t), 0 on [t+ ε,∞) and linear interpolation in between. Let g2(x) = 1 on
(−∞, t − ε], 0 on [t,∞), and linear interpolation in between. Then g1 and g2 form upper
and lower ‘envelopes’ for 1(−∞,t]. So

P (W ≤ t)− P (Z ≤ t) ≤ E g1(W )−E g1(Z) + E g1(Z)− P (Z ≤ T ).
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Now E g1(W ) − E g1(Z) ≤ 1
εWass(W,Z) since g1 is (1/ε)-Lipschitz, and E g1(Z) − P (Z ≤

t) ≤ Cε since Z has density bdd by C.

Now using g2, same bound holds for the other side: P (Z ≤ t)− P (W ≤ t). Optimize over
ε to get the required bound. 2

2.5 A stronger notion of distance

Exercise 1: Sn a simple random walk (SRW). Sn =
∑n

1 Xi, with Xi iid ±1. Then

Sn√
n

=⇒ Z ∼ N(0, 1).

The Berry-Esseen bound: Suppose X1, X2, . . . iid E(X1) = 0,E(X2
1 ) = 1,E |X|3 < ∞.

Then

Kolm

(
Sn√
n
,Z

)
≤ 3 E |X1|3√

n

Can also show that for SRW,

Wass

(
Sn√
n
,Z

)
≤ Const√

n

This means that it is possible to construct Sn√
n

and Z on the same space such that

E

∣∣∣∣ Sn√n − Z
∣∣∣∣ ≤ C√

n

Can we do it in the strong sense? That is:

P

(∣∣∣∣ Sn√n − Z
∣∣∣∣ > t√

n

)
≤ Ce−ct.

This is known as Tusnády’s Lemma. Will come back to this later.

3 Integration by parts for the gaussian measure

The following result is sometimes called ‘Stein’s Lemma’.

Lemma 3 If Z ∼ N(0, 1), and f : R → R is an absolutely continuous function such that
E |f ′(Z)| <∞, then EZf(Z) = E f ′(Z).
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Proof: First assume f has compact support contained in (a, b). Then the result follows
from integration by parts:∫ b

a
xf(x)e−x

2/2dx =
[
f(x)e−x

2/2
]b
a

+

∫ b

a
f ′(x)e−x

2/2 dx.

Now take any f s.t. E |Zf(Z)| <∞,E |f ′(Z)| <∞,E |f(Z)| <∞.

Take a piecewise linear function g that takes value 1 in [−1, 1], 0 outside [−2, 2], and between
0 and 1 elsewhere. Let

fn(x) := f(x)g(x/n).

Then clearly,

|fn(x)| ≤ |f(x)| for all x and fn(x)→ f(x) pointwise.

Similarly, f ′n → f ′ pointwise. Rest follows by DCT. The last step is to show that the
finiteness of E |f ′(Z)| implies the finiteness of the other two expectations.

Suppose E |f ′(Z)| <∞. Then∫ ∞
0
|xf(x)| e−x2/2 dx ≤

∫ ∞
0

x

∫ x

0

∣∣f ′(y)
∣∣ dy e−x2/2 dx

=

∫ ∞
0

∣∣f ′(y)
∣∣ ∫ ∞

y
xe−x

2/2dx︸ ︷︷ ︸
e−y2/2

dy.

Finiteness of E |f(Z)| follows from the inequality |f(x)| ≤ sup|t|≤1 |f(t)|+ |xf(x)|. 2

Exercise 2: Find f s.t. E |Zf(Z)| <∞ but E |f ′(Z)| =∞.

Next time, Stein’s method. Sketch:

Suppose you have a r.v. W and Z ∼ N(0, 1) and you want to bound

sup
g∈D
|E g(W )−E g(Z)| ≤ sup

f∈D′

∣∣E (f ′(W )−Wf(W )
)∣∣

Main difference between stein’s method and characteristic functions is that Stein’s method
is a local technique. We transfer a global problem to a local problem. It’s a theme that is
present in many branches of mathematics.
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4 First step in Stein’s method

Suppose you have a r.v. W and a standard gaussian r.v. Z and you want to bound

sup
g∈D
|E g(W )−E g(Z)| ,

where D is some given class of functions. The first step is to find another class of functions
D′ such that

sup
g∈D
|E g(W )−E g(Z)| ≤ sup

f∈D′

∣∣E (f ′(W )−Wf(W )
)∣∣ . (1)

Stein’s idea: If D′ is a class of functions such that for every g ∈ D, ∃f ∈ D′ s.t.

f ′(x)− xf(x) = g(x)−E g(Z) (2)

for Z ∼ N(0, 1), then (1) holds. (This o.d.e. is sometimes called the ‘Stein equation’.)
Indeed, take any g ∈ D, and find f ∈ D′ that solves the above equation. Then

E g(W )−E g(Z) = E [g(W )−E g(Z)]

= E
(
f ′(W )−Wf(W )

)
.

Clearly, given D it is in our interest to have D′ as small as possible.

Lemma 4 (Stein) Given a function g : R → R that is bounded, ∃ absolutely continuous f
solving f ′(x)− xf(x) = g(x)−E g(Z) for all x, satisfying

|f |∞ ≤
√
π

2
|g −Ng|∞ and

∣∣f ′∣∣∞ ≤ 2 |g −Ng|∞

(where |f |∞ = supx∈R |f(x)|, Ng := E g(Z), Z ∼ N(0, 1)).

If g is Lipschitz, but not necessarily bounded, then

|f |∞ ≤
∣∣g′∣∣∞ , ∣∣f ′∣∣∞ ≤

√
2

π

∣∣g′∣∣∞ , and
∣∣f ′′∣∣∞ ≤ 2

∣∣g′∣∣∞ .
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Actually, the third and fourth inequalities are not due to Stein, but were obtained later.

Exercise 1: Show that all five constants are the best possible.

So we can now take D′ to be these f ’s (which in particular have the given bounds).

The above lemma tells us, for instance, that

Wass(W,Z) ≤ sup
{∣∣E (f ′(W )−Wf(W )

)∣∣ : |f |∞ ≤ 1, |f ′|∞ ≤
√

2/π, |f ′′|∞ ≤ 2
}
.

5 Example: Ordinary CLT in the Wasserstein metric

Suppose X1, X2, . . . , Xn are independent, mean 0, variance 1, E |Xi|3 < ∞. Let Sn =∑n
1 Xi. Take any f ∈ C1 with f ′ absolutely continuous, and satisfying |f | ≤ 1,|f ′| ≤

√
2/π,

and |f ′′| ≤ 2. First, note that

EWf(W ) =
1√
n

∑
E (Xif(W )) . (3)

Now let

Wi = W − Xi√
n

=

∑
j 6=iXj√
n

Then Xi,Wi are independent. Thus

EXif(Wi) = E(Xi)︸ ︷︷ ︸
=0

E f(Wi) = 0

and so

E (Xif(W )) = E (Xi (f(W )− f(Wi)))

= E
(
Xi

(
f(W )− f(Wi)− (W −Wi)f

′(Wi)
))

+ E
[
Xi(W −Wi)f

′(Wi)
]
.

Note that ∣∣f(b)− f(a)− (b− a)f ′(a)
∣∣ ≤ 1

2
(b− a)2

∣∣f ′′∣∣∞
and that W −Wi = Xi/

√
n. Thus∣∣∣∣E [Xi

(
f(W )− f(Wi)−

Xi√
n
f ′(Wi)

)]∣∣∣∣
≤ 1

2
E

∣∣∣∣Xi
X2
i

n

∣∣∣∣ · ∣∣f ′′∣∣∞ ≤ 1

n
E |Xi|3 .
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Again,

E
[
Xi (W −Wi) f

′(Wi)
]

=
1√
n

EX2
i f
′(Wi)

=
1√
n

E f ′(Wi)

since EX2
i = 1 and Xi is independent of Wi.

From (3) and the above calculation we see that∣∣∣∣EWf(W )− 1

n

∑
E f ′(Wi)

∣∣∣∣ ≤ 1

n3/2

n∑
i=1

E |Xi|3 .

Finally, note that∣∣∣∣ 1n∑E f ′(Wi)−E f ′(W )

∣∣∣∣ ≤ |f ′′|∞n ∑
E |W −Wi|

=
|f ′′|∞
n3/2

∑
E |Xi| ≤

2

n3/2

∑
E |Xi| .

Combining, we have ∣∣E f(W )W −E f ′(W )
∣∣

≤ 1

n3/2

∑
E |Xi|3 +

2

n3/2

∑
E |Xi| .

Since EX2
i = 1 we can conclude that E |Xi|3 ≥ 1 and hence E |Xi| ≤

(
E |Xi|3

)1/3 ≤ E |Xi|3.
We have now arrived at a ‘Berry-Esséen bound’ for the Wasserstein metric:

Theorem 5 Suppose X1, . . . , Xn are independent with mean 0, variance 1, and finite third
moments. Then

Wass

(∑n
1 Xi√
n

, Z

)
≤ 3

n3/2

n∑
1

E |Xi|3 ,

where Z ∼ N(0, 1).

Unfortunately, this isn’t a real Berry-Esséen bound, since it’s a bound on the Wasserstein
metric and not the Kolmogorov metric. From a lemma proved in Lecture 2, we can get

Kolm(W,Z) ≤ 2

√
1√
2π

Wass(W,Z) =
2

(2π)1/4

√
Wass(W,Z).

But this is of order n−1/4, which is suboptimal.
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Exercise 2: Get the true Berry-Esséen bound using Stein’s method. This involves analyz-
ing the solution of the Stein equation (2) for g(x) = 1{x≤t} for arbitrary t ∈ R.

Exercise 3: Consider Erdős-Rényi graph G(n, p). Has n vertices and
(
n
2

)
possible edges,

each edge being open or closed with prob p and 1 − p, independently of each other. Let
Tn = number of triangles in this graph. Find a way to use Stein’s method to prove the CLT
for Tn when (a) p is fixed, and (b) p is allowed to go to zero with n.
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In this lecture we are going to study the solution of the differential equation

f ′(x)− xf(x) = g(x)−Eg(Z), Z ∼ N(0, 1). (4)

Lemma 6 Given function g : R→ R such that E|g(Z)| <∞ where Z ∼ N(0, 1),

f(x) = ex
2/2

∫ x

−∞
e−y

2/2(g(y)−Eg(Z))dy (5)

is an absolutely continuous solution of (4).

Moreover, any a.c. solution f̃ of (4) is of the form

f̃(x) = f(x) + cex
2/2, c ∈ R.

Finally, f is the only solution that satisfies lim|x|→∞ f(x)e−x
2/2 = 0.

Proof: By the method of integrating factors, we have that if f is a solution to (4), then

d

dx
(e−x

2/2f(x)) = e−x
2/2(f ′(x)− xf(x)) = e−x

2/2(g(x)−Eg(Z)).

So, (5) is a reasonable candidate as a solution of (4). And it is easy to verify directly
that (5) indeed satisfies (4).

If f̃ is any other solution of (4), then

d

dx

(
e−x

2/2(f(x)− f̃(x))
)

= 0.

Hence, f̃(x) = f(x) + cex
2/2 for some c ∈ R.

Clearly, from definition
lim

x→−∞
f(x)e−x

2/2 = 0 (by DCT).

Note that since Z ∼ N(0, 1), we have∫ ∞
−∞

e−y
2/2(g(y)−Eg(Z))dy = 0.
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So, f can also be written as follows

f(x) = −ex2/2
∫ ∞
x

e−y
2/2(g(y)−Eg(Z))dy. (6)

Therefore, by DCT, limx→+∞ f(x)e−x
2/2 = 0.

2

Remark 7 If, instead of standard gaussian, Z follows any other distribution then all of the
statements of the above lemma still hold except limx→+∞ f(x)e−x

2/2 = 0.

5.1 Another form of the solution

Lemma 8 Assume g is Lipschitz. Then

f(x) = −
∫ 1

0

1

2
√
t(1− t)

E
[
Zg(
√
tx+

√
1− tZ)

]
dt, Z ∼ N(0, 1) (7)

is a solution of (4). In fact, it must be the same as (5), because lim|x|→∞ f(x)e−x
2/2 = 0.

Proof: Let g is C-Lipschitz. Then1 |g′|∞ ≤ C.

On differentiating f and carrying the derivative inside the integral and expectation which
can be justified using DCT, we have

f ′(x) = −
∫ 1

0

1

2
√

1− t
E
[
Zg′(
√
tx+

√
1− tZ)

]
dt. (8)

On the other hand, the Stein identity gives us

E
[
Zg(
√
tx+

√
1− tZ)

]
=
√

1− tE
[
g′(
√
tx+

√
1− tZ)

]
.

Thus,

f ′(x)− xf(x) =

∫ 1

0
E

[(
− Z

2
√

1− t
+

x

2
√
t

)
g′(
√
tx+

√
1− tZ)

]
dt

=

∫ 1

0
E

[
d

dt
g′(
√
tx+

√
1− tZ)

]
dt

= E

[∫ 1

0

d

dt
g′(
√
tx+

√
1− tZ)dt

]
= g(x)−Eg(Z).

1Any Lipschitz function g is absolutely continuous. Hence, it is (Lebesgue) almost surely differentiable.
Define g′ to be derivative of g at the points where it exists and 0 elsewhere.
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2

Recall the notation Ng := Eg(Z). Now we will prove that if g : R→ R is bounded,

I. |f |∞ ≤
√
π

2
|g −Ng|∞ and II.

∣∣f ′∣∣∞ ≤ 2 |g −Ng|∞

and if g is Lipschitz, but not necessarily bounded, then

III. |f |∞ ≤
∣∣g′∣∣∞ , IV.

∣∣f ′∣∣∞ ≤
√

2

π

∣∣g′∣∣∞ , and V.
∣∣f ′′∣∣∞ ≤ 2

∣∣g′∣∣∞ .
This will prove the Lemma 4 of Lecture 3. The bounds (I), (II) and (V) were obtained by
Stein.

Proof of bound (III) : Applying Stein’s identity on (7), we have

f(x) = −
∫ 1

0

1

2
√
t
E
[
g′(
√
tx+

√
1− tZ)

]
dt.

Hence,

|f |∞ ≤ |g′|∞
∫ 1

0

1

2
√
t

= |g′|∞.

�

Proof of bound (IV) : From (8), it follows that

|f |∞ ≤ (E|Z|) |g′|∞
∫ 1

0

1

2
√

1− t
=

√
2

π
|g′|∞.

�

Exercise 9 Get the bound (V) from the representation (7).

Proof of bound (I) : Take f as in (5). Suppose x > 0. Using the representation in (6),
we have

|f(x)| ≤ |g −Ng|∞
(
ex

2/2

∫ ∞
x

e−y
2/2dy

)
.

Now, d
dxe

x2/2
∫∞
x e−y

2/2dy = −1 + xex
2/2
∫∞
x e−y

2/2dy ≤ 0 ∀x > 0. The last step follows

from Mill’s ratio inequality which says that
∫∞
x e−y

2/2dy ≤ 1
xe
−x2/2 ( for a quick proof, note

that LHS ≤
∫∞
x

y
xe
−y2/2dy = RHS ).

So, ex
2/2
∫∞
x e−y

2/2dy is maximized at x = 0 on [0,∞) where its value is
√

π
2 . Hence,

|f(x)| ≤
√
π

2
|g −Ng|∞ ∀x > 0.
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For x < 0, use the form (5) and proceed in the similar manner. �

Proof of bound (II) : Again, we will only consider x > 0 case. The other case will be
similar.

Note that

f ′(x) = g(x)−Ng + xf(x) = g(x)−Ng − xex2/2
∫ ∞
x

e−y
2/2(g(y)−Ng)dy.

Therefore,

|f ′(x)| ≤ |g −Ng|∞
(

1 + xex
2/2

∫ ∞
x

e−y
2/2dy

)
≤ 2|g −Ng|∞ (By Mill’s ratio inequality).

�

Proof of bound (V) : On differentiating (4) and rearranging

f ′′(x) = g′(x) + f(x) + xf ′(x)

= g′(x) + f(x) + x(g(x)−Ng + xf(x))

= g′(x) + x(g(x)−Ng) + (1 + x2)f(x). (9)

We can write g(x)−Ng in terms of g′ as follows,

g(x)−Ng =
1√
2π

∫ ∞
−∞

e−y
2/2(g(x)− g(y))dy

=
1√
2π

[∫ x

−∞

∫ x

y
g′(z)e−y

2/2dzdy −
∫ ∞
x

∫ y

x
g′(z)e−y

2/2dzdy

]
=

1√
2π

[∫ x

−∞
g′(z)

∫ z

−∞
e−y

2/2dydz −
∫ ∞
x

g′(z)

∫ ∞
z

e−y
2/2dydz

]
=

∫ x

−∞
g′(z)Φ(z)dz −

∫ ∞
x

g′(z)Φ(z)dz

where Φ(z) =
∫ z
−∞

1√
2π
e−y

2/2dy is the distribution function for standard normal and Φ(z) =

1− Φ(z).
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Similarly,

f(x) = ex
2/2

∫ x

−∞
e−y

2/2(g(y)−Eg(Z))dy

= ex
2/2

∫ x

−∞
e−y

2/2

(∫ y

−∞
g′(z)Φ(z)dz −

∫ ∞
y

g′(z)Φ(z)

)
dzdy

= ex
2/2

(∫ x

−∞
g′(z)Φ(z)

∫ x

z
e−y

2/2dydz −
∫ ∞
−∞

g′(z)Φ(z)

∫ z∧x

−∞
e−y

2/2dydz

)
=
√

2πex
2/2

(∫ x

−∞
g′(z)Φ(z)(Φ(z)− Φ(x))dz

−
∫ x

−∞
g′(z)Φ(z)Φ(z)dz −

∫ ∞
x

g′(z)Φ(z)Φ(x)dz

)
= −
√

2πex
2/2

[
Φ(x)

∫ x

−∞
g′(z)Φ(z)dz + Φ(x)

∫ ∞
x

g′(z)Φ(z)dz

]

Substituting the above expressions for g −Ng and f in (9), we get

f ′′(x) = g′(x) +
(
x−
√

2π(1 + x2)ex
2/2Φ(x)

)∫ x

−∞
g′(z)Φ(z)dz

+
(
−x−

√
2π(1 + x2)ex

2/2Φ(x)
)∫ ∞

x
g′(z)Φ(z)dz.

To be continued in the next lecture.
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6 Continuation of Stein Bound

In the previous lecture we proved bounds on f and its derivatives, f satisfying

f ′(x)− xf(x) = g(x)−Ng,

where Ng = E g(Z) and Z ∼ N(0, 1).

We are in the process of bounding |f ′′|∞ under the assumption that g is Lipschitz. Contin-
uing from the previous lecture, we have

f ′′(x) = g′(x) +
(
x−
√

2π(1 + x2)ex
2/2(1− Φ(x))

) ∫ x

−∞
g′(z)Φ(z)dz

+
(
−x−

√
2π(1 + x2)ex

2/2Φ(x)
) ∫ ∞

x
g′(z)(1− Φ(z))dz.

This gives

|f ′′(x)|∞ ≤ |g′|∞
[
1 +

∣∣x−√2π(1 + x2)ex
2/2(1− Φ(x))

∣∣ ∫ x

−∞
Φ(z)dz

+
∣∣−x−√2π(1 + x2)ex

2/2Φ(x)
∣∣ ∫ ∞

x
(1− Φ(z))dz

]
.

(10)

Recall the Mill’s ratio inequality on Φ(x) for x > 0:

xex
2/2

√
2π(1 + x2)

≤ 1− Φ(x) ≤ ex
2/2

x
√

2π
. (11)

Exercise 10 Prove the left inequality in (11).

There is a similar bound for x ≤ 0. To proceed, we wish to remove the absolute values in
equation (10), by determining the sign of the expressions within the absolute value. From
the Mill’s ratio (11) we have

x+
√

2π(1 + x2)ex
2/2Φ(x) > 0 (12a)
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and
−x+

√
2π(1 + x2)ex

2/2(1− Φ(x)) > 0. (12b)

You can check (12b) by noting that for x < 0 the inequality is obvious, and for x > 0 use
the lower Mill’s ratio inequality; (12a) follows similarly. Hence both expressions within the
absolute values in equation (10) are negative.

To finish the simplification, observe that integration by parts gives∫ x

−∞
Φ(z)dz = xΦ(x) +

e−x
2/2

√
2π

and ∫ ∞
x

(1− Φ(z))dz = −x(1− Φ(x)) +
e−x

2/2

√
2π

.

Combining, we get

|f ′′(x)| ≤ |g′|∞
[
1 +

(
−x+

√
2π(1 + x2)ex

2/2(1− Φ(x))
)(
xΦ(x) +

e−x
2/2

√
2π

)
+
(
x+
√

2π(1 + x2)ex
2/2Φ(x)

)(
−x(1− Φ(x)) +

e−x
2/2

√
2π

)]
= 2|g′|∞.

(13)

This proves the desired bound.

The factor 2 in the bound above turns out to be sharp. In contrast to the calculation above,
it is easy to attain a factor of 4, as follows. First we take the derivative of the equation

f ′(x)− xf(x) = g(x)−Ng

to get
f ′′(x)− xf ′(x)− f(x) = g′(x),

or
f ′′(x)− xf ′(x) = g′(x) + f(x) := h(x).

Since Nh = Eh(Z) = Ef ′′(Z) − EZf ′(Z) = 0 (from Stein’s Lemma in lecture 2), we see
that f ′ is a solution of the Stein equation with h. The triangle inequality and one of the
earlier Stein bounds give

|g′ + f | ≤ |g′|+ |f | ≤ 2|g′|∞,

hence
|f ′′|∞ ≤ 2|g′ + f |∞ ≤ 4|g′|∞.

This completes the discussion of the five Stein bounds.
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7 Dependency Graphs

Let {Xi, i ∈ V } be a collection of random variables, and G = (V,E) be a graph with vertex
set V .

Definition 11 G is called a dependency graph for {Xi, i ∈ V } if the following holds: for
any two subsets of vertices S, T ⊆ V such that there is no edge from any vertex in S to any
vertex in T , the collections {Xi, i ∈ S} and {Xi, i ∈ T} are independent.

The idea behind the usefulness of dependency graphs is that if the max degree is not too
large, we get a CLT. Note that there is not a unique dependency graph (for example, the
complete graph works for any set of r.v.).

Example 12 Suppose Y1, Y2, . . . , Yn+1 are independent random variables, and let Xi =
YiYi+1. We will want to study the behavior of∑

i

Xi =
∑
i

YiYi+1.

A dependency graph for {Xi, i ∈ V } with V = {1, . . . , n} is given by the graph with edge set
{(i, i+ 1); 1 ≤ i ≤ n− 1}.

Given a graph G, let D = 1 + maximum degree of G. We have the following lemma.

Lemma 13 Let S =
∑

i∈V Xi. Then Var(S) ≤ D
∑

i∈V Var(Xi).

Proof: Assume without loss of generality that E(Xi) = 0 for all i ∈ V . We write j ∼ i if j
is a neighbor of i or j = i. Then

Var(S) =
∑
i,j

E(XiXj)
(a)
=
∑
i,j∼i

E(XiXj)
(b)

≤
∑
i,j∼i

EX2
i + EX2

j

2
≤ D

∑
i∈V

Var(Xi),

where (a) follows by the zero-mean assumption and independence, and (b) from the AM-GM
inequality (ab ≤ (a2 + b2)/2). 2

In the next lecture we will use the lemma to prove the following theorem. Let σ2 =
Var(

∑
Xi) and W =

∑
Xi
σ , where it is assumed that E(Xi) = 0.

Theorem 14 It holds that

Wass(W,Z) ≤ 4√
πσ2

√
D3
∑

E |Xi|4 +
D2

σ3

∑
E |Xi|3,

where Z ∼ N(0, 1).
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Remark 15 The bound in the theorem is often tight. We can get a bound on the Kol-
mogorov metric from the bound

Kolm(W,Z) ≤ 2

(2π)1/4

√
Wass(W,Z),

but this is not a good bound.
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8 Method of Dependency Graphs

We recall the definition of a dependency graph from the previous lecture. For a collection
of random variables {Xi, i ∈ V } indexed by the vertices V of a graph G = (V,E) we say
that G is a dependency graph if for any disjoint subsets S, T ⊆ V with no edges between S
and T we have {Xi, i ∈ S} and {Xi, i ∈ T} independent. Let D = 1 + max degree G.

Lemma 16 Suppose that E(Xi) = 0, σ2 = Var(
∑
Xi),W =

∑
Xi
σ and Z ∼ N(0, 1). Then

Wass(W,Z) ≤ 4√
πσ2

√
D3
∑

E|Xi|4 +
D2

σ3

∑
E|Xi|3.

Proof: Let Wi = 1
σ

∑
j∈Ni Xj where Ni = {i} ∪ {neighbours of i}. As in the case of iid

random variables we have Xi and Wi independent but we do not in general have that Wi

and W −Wi are independent.

Take any f such that

|f | ≤ 1, |f ′| ≤
√

2

π
, |f ′′| ≤ 2.

Then

EWf(W ) =
1

σ

∑
E(Xif(W )) =

1

σ

∑
E(Xi(f(W )− f(Wi))) = (I) + (II)

where

(I) =
1

σ

∑
E[Xi(f(W )− f(Wi)− (W −Wi)f

′(W ))]

and

(II) =
1

σ

∑
E[Xi(W −Wi)f

′(W )].

Now

(I) ≤ 1

σ

∑ 1

2
E|Xi(W −Wi)

2||f ′′|∞ ≤
1

σ3

∑
E|Xi(

∑
j∈Ni

Xj)
2|
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since W −Wi = 1
σ

∑
j∈Ni Xj . Also

(II) =
1

σ

∑
EXi(

∑
j∈Ni

Xjf(W )) = E

(
f ′(W )

[
1

σ2

∑
Xi(

∑
j∈Ni

Xj)

]
︸ ︷︷ ︸

T

)
.

We will proceed by showing that T is concentrated. Note that since EXiWi = 0,

1

σ
E
∑

Xi(W −Wi) =
1

σ
E
∑

XiW = EW 2 = 1

and so

|(II)− f ′(W )| = |E(f ′(W )(T − 1)| ≤ |f ′|∞E|T − 1| ≤
√

2

π

√
E(T − 1)2 =

√
2

π

√
Var(T )

Combining these results we have

|EWf(W )− Ef ′(W )| ≤
√

2

π

√√√√√√Var(
1

σ2

∑
Xi(

∑
j∈Ni

Xj))︸ ︷︷ ︸
III

+
1

σ3

∑
E|Xi(

∑
j∈Ni

Xj)
2|︸ ︷︷ ︸

IV

.

Now

IV ≤ 1

σ3

∑
i

∑
j,k∈Ni

E|XiXjXk|

≤ 1

σ3

∑
i

∑
j,k∈Ni

1

3
(E|Xi|3 + E|Xi|3 + E|Xi|3)

≤ D2

σ3

∑
E|Xi|3

where the second inequality follows from the AM-GM inequality.

Next we need to estimate
Var(

∑
i,j∈Ni

XiXj).

The collection {XiXj , i ∈ V, j ∈ Ni} is a collection with a dependency graph of maximum
degree 2D2. This can be seen as follows: XiXj is independent of XkXl if neither k nor l
belongs to Ni∪Nj . Now |Ni∪Nj | ≤ 2D and each vertex in this set has at most D neighbors
so the maximum degree of the new dependency graph is 2D2. Using the variance bound on
sums of dependency graph variables derived in the previous lecture we have

Var(
∑
i,j∈Ni

XiXj) ≤ 2D2
∑
i∼j

Var(XiXj) ≤ 2D3
∑

EX4
i

6-23



using the fact that

Var(XiXj) ≤ E(X2
iX

2
j ) ≤ 1

2
EX4

i +
1

2
EX4

j .

The proof is completed by substituting this estimate. 2

Example 17 Let Y1, . . . , Yn+1 be iid mean 0 variance 1 random variables and let Xi =
YiYi+1 A dependency graph for the Xi has edge set {(i, i+ 1) : 1 ≤ i ≤ n} and D = 3. Then
Var(

∑
Xi) = σ2 = Cn so

Wass

(
1

σ

∑
Xi, Z

)
≤ C 1

σ2

√
D3
∑

EX4
i +

D2

σ3

∑
E|Xi|3 ≤

c√
n

Exercise 18 In an Erdos-Renyi random graph G(n, p) let Tn,p be the number of triangles.
Using the method of dependency graphs show that for some absolute constant C

Wass

(
Tn,p − ETn,p√

Var(Tn,p)
, Z

)
≤ C

np9/2

Exercise 19 • Find out the best known result for the above problem.

• Show that the CLT can not hold if np 6→ ∞.

• Refine the method of dependency graphs to show a CLT when np→∞.
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9 Method of Exchangeable Pair

Suppose (W,W ′) is an exchangeable pair of random variables, i.e. (W,W ′)
d
= (W ′,W ), and

there is a constant λ ∈ (0, 1) such that

E(W ′ −W |W ) = −λW a.e. (14)

Also suppose EW 2 = 1, then we have

Wass(W,Z) ≤

√
2

π
Var

(
E(

1

2λ
(W ′ −W )2|W )

)
+

1

3λ
E|W ′ −W |3 (15)

where Z ∼ N(0, 1).

In general λ is a small positive number, usually of the oder 1/n and W ′ is obtained by
applying a small perturbation to W .

Note that from the given conditions we have EW = EW ′ and EW 2 = EW ′2 = 1. Using
this information along with (14) we have

1. EW = 0. Since E[−λW ] = E[E(W ′ −W |W )] = E[W ′ −W ] = 0 and λ 6= 0.

2. E(W ′ −W )2 = 2λ. Since

E(W ′ −W )2 = E[W ′2 +W 2 − 2W ′W ]

= E[2W 2 − 2W ′W ]

= E[2W (W −W ′)] = E[2WE(W −W ′|W )] = E[2λW 2] = 2λ.

Now take any twice differentiable function f with ‖f‖∞ ≤ 1, ‖f ′‖∞ ≤
√

2
π and ‖f ′′‖∞ ≤ 2.

Let

F (x) =

∫ x

0
f(y)dy.

Clearly F is a well defined thrice differentiable function. So using Taylor series expansion
for F we have

0 = E[F (W ′)− F (W )]

= E

[
(W ′ −W )f(W ) +

1

2
(W ′ −W )2f ′(W ) + Remainder

]
(16)

7-25



where |Remainder| ≤ 1
6 |W −W

′|3‖f ′′‖∞ ≤
1
3 |W −W

′|3. Now

−λE[Wf(W )] = E[(W ′ −W )f(W )]

= −E

[
1

2
(W ′ −W )2f ′(W ) + Remainder

]
= −E

[
1

2
E[(W ′ −W )2|W ] f ′(W )

]
+ E[Remainder].

Dividing both sides by λ we get

|Ef ′(W )−EWf(W )| ≤
∣∣∣∣E [f ′(W ) ·

(
E(

1

2λ
(W −W ′)2|W )− 1

)]∣∣∣∣+
1

3λ
E|W −W ′|3.

Since ‖f ′‖∞ ≤
√

2
π and E(W −W ′)2 = 2λ we have

|Ef ′(W )−EWf(W )| ≤
√

2

π
·E
∣∣∣∣E(

1

2λ
(W −W ′)2|W )− 1

∣∣∣∣+
1

3λ
E|W −W ′|3

≤

√
2

π
Var

(
E(

1

2λ
(W ′ −W )2|W )

)
+

1

3λ
E|W −W ′|3.

Remark 20 If W,W ′ just have the same distribution (need not be exchangeable) then also
the above result holds.

Now let us apply this method to the simplest case of sums of independent random variables.

Let X1, X2, . . . , Xn be independent random variables with mean 0 and variance 1. Define

W =
1√
n

n∑
i=1

Xi.

Let X ′1, X
′
2, . . . , X

′
n be an independent copy of X1, X2, . . . , Xn. Choose an index I uniformly

at random from {1, 2, . . . , n}. Replace XI by X ′I . Let

W ′ =
1√
n

∑
j 6=I

Xj +
X ′I√
n

= W +
X ′I −XI√

n
.

Lemma 21 (W,W ′) is an exchangeable pair.

Proof: Exercise. 2
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Note that W ′ −W =
X′I−XI√

n
. Hence we have

E[W ′ −W |W ] =
1√
n

E[X ′I −XI |W ]

=
1√
n
· 1

n

n∑
i=1

E[X ′i −Xi|W ] = − 1

n
E[

1√
n

n∑
i=1

Xi|W ] = − 1

n
W.

Here condition (15) is satisfied with λ = n−1. Now,

1

3λ
E|W ′ −W |3 =

n

3n3/2
E|X ′I −XI |3 =

1

3n3/2

n∑
i=1

E|X ′i −Xi|3 ≤
8

3n3/2

n∑
i=1

E|Xi|3

and

E

[
1

2λ
(W ′ −W )2|W

]
=

n

2n
E((X ′I −XI)

2|W ) =
1

2n

n∑
i=1

E((X ′i −Xi)
2|W ).

Note that,

E((X ′i −Xi)
2|W ) = E(X ′2i − 2X ′iXi +X2

i |W ) = 1 + E(X2
i |W ).

Hence

Var

(
E(

1

2λ
(W ′ −W )2|W )

)
= Var

(
E(

1

2n

n∑
i=1

X2
i |W )

)

≤ Var

(
1

2n

n∑
i=1

X2
i

)
=

1

4n2

n∑
i=1

Var(X2
i ) ≤ 1

4n2

n∑
i=1

EX4
i

and we have,

Wass(W,Z) ≤

√√√√ 1

2πn2

n∑
i=1

EX4
i +

8

3n3/2

n∑
i=1

E|Xi|3.
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10 Exchangeable pairs

Recall that a pair of random variables is called exchangeable if (W,W ′) and (W ′,W ) are
equal in distribution.

During the last lecture we obtained an upper bound on the Wasserstein distance between
such a W and a Gaussian random variable Z:

Theorem 22 Let Z be a standard Gaussian random variable. If (W,W ′) is an exchangeable
pair of r.v.’s, E(W ′ −W |W ) = −λW for some 0 < λ < 1, and E(W 2) = 1 (or E((W ′ −
W )2) = 2λ), then

Wass(W,Z) ≤

√
2

π
Var

(
E

(
1

2λ
(W ′ −W )2|W

))
+

1

3λ
E(|W ′ −W |3). (17)

Intuitively, if E(W ′−W |W ) = −λW , E((W ′−W )2) = 2λ+o(λ), and E(|W ′−W |3) = o(λ)
then Wass(W,Z) = o(1).

Usually the quantity 1
2λ(W ′ − W )2 is not concentrated. However, we will often have a

σ-algebra F such that W is measurable with respect to F and

E

(
1

2λ
(W ′ −W )2|F

)
is concentrated. By Jensen’s inequality,

Var

(
E

(
1

2λ
(W ′ −W )2|W

))
≤ Var

(
E

(
1

2λ
(W ′ −W )2|F

))
.

11 Example: CLT for the scaled sum of i.i.d. random vari-
ables

Let X1, X2, ..., Xn be i.i.d. random variables with mean 0 and variance 1. Let

W =
1√
n

n∑
i=1

Xi.
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As seen last lecture, we define W ′ as follows:

W ′ =
1√
n

∑
j 6=I

Xj +
XI√
n
,

where the index I is chosen uniformly at random from {1, 2, ..., n} and XI is independent
from, and equal in distribution to the other Xi’s.

Then E(W ′−W |W ) = − 1
nW so λ = 1

n . E
(

1
2λ(W ′ −W )2|W

)
is hard to compute. However,

we can write 1
2λ(W ′ −W )2 = 1

2(X ′I −XI)
2, and if F is σ(X1, X2, ..., Xn) then

E

(
1

2λ
(W ′ −W )2|F

)
=

1

2
+

1

2n

n∑
i=1

X2
i ,

which is concentrated.

12 Hoeffding combinatorial central limit theorem

Suppose (aij)
n
i,j=1 is an array of numbers. Let π be a uniform random permutation of

{1, 2, ..., n}. Let W =
∑n

i=1 aiπ(i).

We would like to say something about how close W−E(W )√
Var(W )

is to the standard Gaussian

distribution N(0, 1).

Hoeffding’s original proof involved a sequence of matrices (a
(n)
ij )ni,j=1 and gave conditions

for convergence to normality. The method of moments was used for the proof. The idea is
to show that

E

(Wn −E(Wn)√
Var(Wn)

)k
converges to 0 for k odd, and to (2k)!

2kk!
for k even.

Bolthausen (’83 or ’84) proved a Berry-Esseen bound for finite n using Stein’s method.

We assume the following, without loss of generality:

n∑
j=1

aij = 0,
n∑
i=1

aij = 0 and
1

n− 1

n∑
i,j=1

a2ij = 1. (18)

To see why this does not compromise generality, for an arbitrary (aij)
n
i,j=1 we define

ai· =
1

n

n∑
j=1

aij ,
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a·j =
1

n

n∑
i=1

aij ,

a·· =
1

n2

n∑
i,j=1

aij ,

and
ãij = aij − ai· − a·j + a··.

Now,

n∑
i=1

ãij =

n∑
i=1

aij −
n∑
i=1

ai· −
n∑
i=1

a·j +

n∑
i=1

a··

=

n∑
i=1

aij −
1

n

n∑
i,j=1

aij −
n∑
i=1

aij +
1

n

n∑
i,j=1

aij

= 0.

Similarly, we can check that the other assumptions in (18) are satisfied by (ãij).

We define

W̃ =
n∑
i=1

ãiπ(i) =
n∑
i=1

aiπ(i) −
n∑
i=1

ai· −
n∑
i=1

a·π(i) + na·· =
n∑
i=1

aiπ(i) − na··.

It can easily be checked that

W̃ −E(W̃ )√
Var(W̃ )

=
W −E(W )√

Var(W )
,

justifying (18).

We now return to our original problem, and assume (18). Then we have

E(aiπ(i)) =
1

n

n∑
j=1

aij = 0,

so E(W ) = 0. For the variance, we can write

Var(W ) =

n∑
i=1

Var(aiπ(i)) +
∑
i 6=j

Cov(aiπ(i), ajπ(j)).

First,

Var(aiπ(i)) = E(a2iπ(i)) =
1

n

n∑
j=1

a2ij ,
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so
n∑
i=1

Var(aiπ(i)) =
1

n

n∑
i,j=1

a2ij .

Now we will calculate the covariance.

Cov(aiπ(i), ajπ(j)) = E(aiπ(i)ajπ(j))

=
1

n− 1

∑
k,l 6=k

aikajl

=
−1

n(n− 1)

∑
k

aikajk

where the last equality comes from the fact that
∑

l 6=k ajl = −ajk.

We now obtain ∑
i 6=j

Cov(aiπ(i), ajπ(j)) =
−1

n(n− 1)

∑
i 6=j

∑
k

aikajk

=
1

n(n− 1)

∑
i,k

a2ik.

Combining the variance and covariance calculations above, and keeping (18) in mind, we
obtain

Var(W ) =
1

n− 1

n∑
i,j=1

a2ij = 1.

Next, we will create an exchangeable pair (π, π′) by defining π′ = π ◦ (I, J) and W ′ =∑n
i=1 aiπ′(i) where (I, J) is a uniformly random transposition.

To be continued in the next lecture.
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13 Proof of the Hoeffding combinatorial CLT

Recall the Hoeffding CLT from the previous lecture:

Theorem 23 Suppose (aij)1≤i,j≤n is an array of numbers. Let π be a uniform random
permutation of {1, . . . , n}. Let W =

∑n
i=1 aiπ(i). Under suitable conditions on (aij)1≤i,j≤n,

W converges to the normal distribution (after centering and scaling).

We assumed, without loss of generality, that

∀i
n∑
j=1

aij = 0, ∀j
n∑
i=1

aij = 0,
1

n− 1

∑
i,j

a2ij = 1

so that
EW = 0, EW 2 = 1

We will create an exchangeable pair (π, π′) by defining π′ = π◦(I, J), where (I, J) is selected
uniformly at random over the set of transpositions on {1, . . . , n}. That is, π′(I) = π(J),
π′(J) = π(I), and π′(k) = π(k) for k 6= I, J .

Exercise 1: Show that (π, π′) is an exchangeable pair.

Let W ′ =
∑n

i=1 aiπ′(i). So (W,W ′) is an exchangeable pair. Note that

W ′ −W = aIπ′(I) + aJπ′(J) − aIπ(I) − aJπ(J)
= aIπ(J) + aJπ(I) − aIπ(I) − aJπ(J)

So, by summing over the choices for (I, J),

E(W ′ −W |π) =
1

n(n− 1)

∑
1≤i 6=j≤n

(aiπ(j) + ajπ(i) − aiπ(i) − ajπ(j))
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Note that
1

n(n− 1)

∑
i 6=j

aiπ(i) =
1

n
W.

Again, by assumption,
∑

j 6=i aiπ(j) = −aiπ(i) for fixed i, so

1

n(n− 1)

∑
i 6=j

aiπ(j) =
−1

n(n− 1)

∑
i

aiπ(i) =
−1

n(n− 1)
W.

A similar argument applies to show

1

n(n− 1)

∑
i 6=j

ajπ(i) =
−1

n(n− 1)
W.

Combining, we get that

E(W ′ −W |π) =
−2(n− 2)

n(n− 1)
W.

Since this depends only on W ,

E(W ′ −W |W ) =
−2(n− 2)

n(n− 1)
W = −λW

where λ = 2(n−2)
n(n−1) .

Now consider

E((W ′ −W )2|π) =
1

n(n− 1)

∑
1≤i 6=j≤n

(aiπ(i) + ajπ(j) − aiπ(j) − ajπ(i))2

The conditional expectation given W has a smaller variance, so bounding this will be
sufficient to apply the method of exchangeable pairs.

Exercise 2: Bound the variance of this conditional expectation to obtain the complete
Hoeffding combinatorial CLT.

A paper of Bolthausen’s (84, Z.W.) gives a bound on the Kolmogorov distance for the
Hoeffding CLT.

Theorem 24 Consider W as above. Let Z ∼ N(0, 1). Then

sup
t
|P(W ≤ t)−P(Z ≤ t)| ≤ K

∑
i,j |aij |3

n

where K is a universal constant.
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What is the order of the bound? Informally, we can say 1√
n

. Typically,
n2O(a2ij)

n = 1 (since
1

n(n−1)
∑

i,j a
2
ij = 1 and

∑
i aij = 0 =

∑
j aij), so aij = O(1/

√
n). This is assuming the

values are evenly spaced over the aij . So K
∑
i,j |aij |3

n = O(n2n−3/2)/n = O(1/
√
n).

The method of exchangeable pairs does not allow work to obtain Bolthausen’s result. It is
possible to get a bound on the Wasserstein distance, but it will involve 4th powers.

14 CLT for the antivoter model

Suppose G = (V,E) is an r-regular graph with n vertices (for instance, the torus). (X
(t)
i )i∈V

is a process of ±1 valued rv evolving as follows. At any time t, choose a vertex i uniformly

at random. Then choose a neighbor j of i uniformly at random. Let X
(t+1)
i = −X(t)

j and

X
(t+1)
k = X

(t)
k , ∀k 6= i. So you make the opposite decision of your neighbor.

This chain will converge to a stationary distribution (supposing aperiodicity and irreducibil-
ity), although the stationary distribution is not trivial to describe. Let (Xi)i∈V be a random
variable distributed as the stationary distribution. The problem is to show that

∑
i∈V Xi

is approximately Gaussian (after centering and scaling) if n is large and r is fixed.

Rinott and Rotar (97, AAP) got a Berry-Esséen bound, using the method of exchangeable
pairs.

Let W =
∑

i∈V Xi. Construct W ′ by taking a step in the chain. Rinott and Rotar proved
that, although the chain is not usually reversible, (W,W ′) is still an exchangeable pair.
(Even though we do not require exchangeability if we use the bound on the Wasserstein
distance given in this set of notes, it may not be possible to do so for the Rinott-Rotar
Berry-Esséen bounds.)

Clearly, W ′ −W ∈ {−2, 0, 2}. Let

a(X) = |{edges (i, j) ∈ E s.t. Xi = Xj = 1}|
b(X) = |{edges (i, j) ∈ E s.t. Xi = Xj = −1}|
c(X) = |{edges (i, j) ∈ E s.t. Xi 6= Xj}|

If T (X) = |{i ∈ V : Xi = 1}| = 1
2

(∑
i∈V Xi + n

)
, then it can be seen that

T (X) =
2a(X) + c(X)

r
⇒ n− T (X) =

2b(X) + c(X)

r

Then P(W ′ −W = 2|X) = 2a(X)
rn and P(W ′ −W = 2|X) = 2b(X)

rn . So

E(W ′ −W |X) =
4b(X)− 4a(X)

rn
=

2(n− 2T (X))

n
=
−2

n
W
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Exercise 3: Consider the 1-dim Ising model on n vertices. The graph is either:s s · · · s
1 2 n

ors s · · · s
1 2 n

Let σ = (σ1, . . . , σn), n spins (±1 valued). The probability distribution on the spins is
P(σ) = Z−1 exp(β

∑
i σiσi+1). Prove a CLT for

∑n
i=1 σi using exchangeable pairs.
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15 Concentration Inequalities

Suppose X is a random variable and m is a constant (usually the mean or median of X).
We seek bounds like

P (X −m > t) ≤ exp(−f(t)), P (X −m < −t) ≤ exp(−g(t)).

Typically, f(0) = 0 and limt→∞ f(t) = ∞, and similarly for g. For example, if Xi are iid
with P (Xi = −1) = P (Xi = 1) = 0.5, then

P

(
1

n

n∑
i=1

Xi > t

)
≤ exp

(
−nt2

2

)
,

and similarly for the lower bound, so

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤ 2 exp

(
−nt2

2

)
.

Obviously this provides some justification for the statement that 1
n

∑n
i=1Xi is concentrated

near 0.

Now the issue is to read off the “typical deviation” of X from m. The method is to find
the range of t for which f is “like a constant,” say, e.g., equal to 1. In the example above,
t = n−1/2 is the typical deviation. If t� n−1/2 then nt2/2 is near 0, so the bound provides
no information. If t� n−1/2, then nt2/2 is quite large, so the upper bound on P (X−m > t)
is near 0, and we are left wondering whether there is a smaller neighborhood of m around
which X concentrates.

Caution: Don’t assume that upper bounds are sharp.

The simplest concentration inequalities come from variance bounds: the typical deviation
of X from EX is

√
V ar(X). The following is a useful bound on the variance of a function

of several random variables.

Theorem 25 Efron Stein-Inequality (or Influence Inequality, or MG bound on Variance).

Suppose that X1, ..., Xn, X ′1, ..., X
′
n are independent with X ′i

d
= Xi for all i. Let X =
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(X1, ..., Xn), X(i) = (X1, ..., Xi−1, X
′
i, Xi+1, ...Xn). Then

V ar(f(X)) ≤ 1

2

n∑
i=1

E
[
(f(X)− f(X(i))2

]
.

Proof:

Let X ′ = (X ′1, ..., X
′
n), X [i] = (X ′1, ..., X

′
i, Xi+1, ..., Xn); note X [0] = X and X [n] = X ′.

V ar(f(X)) = Ef(X)2 − (Ef(X))2

= Ef(X)2 − E[f(X)f(X ′)]

= E[f(X)(f(X)− f(X ′))]

=

n∑
i=1

E
[
f(X)

(
f(X [i−1])− f(X [i])

)]
Fix i and note that f(X)

(
f(X [i−1])− f(X [i])

)
is a function of (X1, ...Xn, X

′
1, ..., X

′
n) =: X∗.

The distribution of X∗ remains unchanged if we switch Xi and X ′i. Under this switching
operation,

f(X)
(
f(X [i−1])− f(X [i])

)
7→ f(X(i))

(
f(X [i])− f(X [i−1])

)
,

so these two quantities are equal in law. It follows that

a = E
[
f(X)

(
f(X [i−1])− f(X [i])

)]
= E

[
f(X(i))

(
f(X [i])− f(X [i−1])

)]
= b.

Observing that a = b implies a = b = (a+ b)/2, we obtain by Cauchy-Schwarz

E
[
f(X)

(
f(X [i−1])− f(X [i])

)]
=

1

2
E
[(
f(X)− f(X(i))

)(
f(X [i−1])− f(X [i])

)]
≤ 1

2

(
E
[
(f(X)− f(X(i)))2

]
E
[
(f(X [i])− f(X [i−1]))2

])1/2
=

1

2
E

[(
f(X)− f(X(i))

)2]
,

where the second step follows by noticing that

E[(f(X)− f(X(i))2] = E[(f(X [i−1])− f(X [i]))2]

(by i− 1 applications of the switching operation). Sum over i to complete the proof.

16 Application: First Passage Percolation

We will apply the Efron-Stein inequality to study first-passage percolation. This section
gives definitions; the application will be finished next class.
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Consider the lattice Z2, with iid nonnegative random edge weights (we)e∈E , E being the set
of edges of the lattice. Let tn = min{

∑
e∈pwe : p is a path from (0, 0) to (n, 0)}. In words,

tn it the first time that the vertex (n, 0) is reached by a liquid that is spilled onto the origin
and which takes a random amount of time to flow over each edge in the graph.

Theorem2: tn/n→ µ in probability where µ depends on the distribution of edge weights.

Note that the weight of a minimal path from (0, 0) to (n+m, 0) is less than or equal to the
sum of the weights of the minimal paths from (0, 0) to (0, n) and from (0, n) to (0, n+m).
Therefore

E(tn+m) ≤ E(tn) + E(tm).

Next time we’ll begin with the subadditive lemma: if {an} is a sequence of real random
numbers satisfying an+m ≤ an + am (i.e., {an} is subadditive), then limn an/n exists in
[−∞,∞) and equals infn an/n.

2Kesten, 1993 Annals of Applied Probability. On the speed of first-passage percolation.
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For E the set of edges in the lattice Z2, let (ωe)e∈E be i.i.d. nonnegative edge weights.
Define

tn := inf{
∑
e∈P

ωe : P is a path from(0, 0)to(n, 0)}

Then E(tn+m) ≤ E(tn) + E(tm) ∀ n,m, as shown last time.

Lemma 26 (Subadditive Lemma) If {an} is a sequence of real nombers, such that
an+m ≤ an + am ∀ n,m, then

lim
n→∞

an
n

= inf
n≥1

an
n

In particular the limit exists.

Proof: Fix k ≥ 1. Take any n and choose m such that n = mk + r with 0 ≤ r < k. Then
an ≤ mak + ar. It follows that lim sup an

n ≤
ak
k , hence

lim sup
an
n
≤ inf

ak
k
≤ lim inf

an
n

which concludes the proof.

Now suppose for the rest of this lecture that E(ω2
e) < ∞. It follows from the lemma that

∃0 ≤ µ <∞ such that E(tn)/n→ µ as n→∞.
Kersten showed: If E(ω2

e) <∞ and P (ωe = 0) < pc(d), where pc(d) is the critical probability
for bond percolation in Zd, then µ > 0.
We want to show: tn

n → µ in probability. Assume now

∃ a > 0s.t.P (ωe > a) = 1 (19)

We will show an inequality of the form V ar(tn) ≤ Cn. Let ln be the nomber of edges in
a shortest minimal-weight path. Under assumption 19, ln ≤ tn

a . By the argument of last
lecture,

V ar(tn) ≤ 1

2

∑
e∈E

E(tn(ω)− tn(ω(e)))2
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where ω
(e)
u = ωu if u 6= e and ω

(e)
e = ω′e where the latter is an independent copy of ωe. By

symmetry, then,

V ar(tn) ≤
∑
e∈E

E
[
(tn(ω)− tn(ω(e)))21(ωe ≤ ω′e)

]
=: ⊗ (say).

Now, if ωe ≤ ω′e and tn(ω) 6= tn(ω(e)), then it is easy to argue that emust be in every minimal
path from (0, 0) to (n, 0) under the configuration ω, and (tn(ω)− tn(ω(e))2 ≤ (ω′e − ωe)2 ≤
(ω′e)

2. Indeed, if the length of all minimal paths increase after increasing ωe to ω′e, then e
must belong to all minimal paths in ω, and we necessarily have tn(ω(e)) ≤ tn(ω) + ω′e − ωe.
Hence

⊗ ≤
∑
e

E((ω′e)
21(e ∈ every minimal path in ω))

=
∑
e

E((ω′e)
2)E(1(e ∈ every minimal path in ω))

= E(ω2
e)E(

∑
e

1(e ∈ every minimal path in ω))

≤ E((ωe)
2)E(ln) ≤ Cn

by assumption 19 and the fact that E(tn)/n→ µ. This concludes the argument.

It has been conjectured that actually C1n
2/3 ≤ V ar(tn) ≤ C2n

2/3 in Z2, where C1 and C2

are positive constants depending on the distribution of ωe. The best known lower bound
in C log n.

Let us now state two standard tools for proving concentration inequalities.

Theorem 27 (Azuma-Hoeffding inequality) Suppose X1, . . . , Xn are martingale dif-
ferences with respect to a filtration {F1, . . . ,Fn} and there exist constants ai, bi such that
ai ≤ Xi ≤ bi almost surely. Then

P

(
max
1≤k≤n

k∑
i=1

Xi ≥ t

)
≤ exp

(
− 2t2∑

(bi − ai)2

)

Theorem 28 (Bounded differences inequality) Suppose f : Rn → R is such that there
are constants c1, . . . , cn such that |f(x) − f((y)| ≤ ci whenever x and y differ only in the
ith coordinate. Suppose X1, . . . , Xn are independent random variables. Then

P (f(X1, . . . , Xn)− E(f(X1, . . . , Xn)) ≥ t) ≤ exp

(
− 2t2∑

c2i

)

Sketch of a proof: Put Yi = E(f(X)|X1, . . . , Xi) − E(f(X)|X1, . . . , Xi−1) and apply the
previous theorem.
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17 Stein’s method for concentration inequalities

The purpose of this lecture will be to prove the following theorem.

Theorem 29 Suppose you have an exchangeable pair (X,X ′) of random objects. Suppose
f and F are two functions such that

(1) F (X,X ′) = −F (X ′, X) a.s.; and

(2) E[f(X,X ′) |X] = f(X) a.s.

Let v(X) = 1
2E
[
|(f(X)− f(X ′))F (X,X ′)|

∣∣X]. Then

(a) E[f(X)] = 0 and

Varf(X) =
1

2
E[(f(X)− f(X ′))F (X,X ′)]

≤ E[v(X)]. (20)

(b) Suppose E(eθf(X)|F (X,X ′)|) is finite for all θ. If B and C are constants such that
v(X) ≤ Bf(X) + C a.s., then

P{|f(X)| > t} ≤ 2 exp

(
− t2

2Bt+ 2C

)
. (21)

(c) E
[
f(X)2k

]
≤ (2k − 1)kE

[
v(X)k

]
for all k ∈ N.

Exercise 30 (You may be able to do this after the proof.)

Extend (c) to all real k > 1/2. (We think that (2k − 1)k remains unchanged for k ≥ 1 but
are not sure for 1/2 < k < 1.)
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Proof: First, note that E[f(X)] = E[F (X,X ′)] = 0 since (X,X ′) is an exchangeable pair
and F is antisymmetric.

Further, we will assume

E[v(X)] < ∞ for part (a); and (22)

E
[
eθf(X)|F (X,X ′)|

]
< ∞ for all θ in part (b). (23)

We start by showing (a).

Varf(X) = E
[
f(X)2

]
= E

[
f(X)F (X,X ′)

]
= E

[
f(X ′)F (X ′, X)

]
since (X,X ′) exchangeable

= −E
[
f(X ′)F (X,X ′)

]
by antisymmetry of F

=
1

2
E
[(
f(X)− f(X ′)

)
F (X,X ′)

]
≤ E[v(X)],

which proves (a).

(b): Let m(θ) = E
[
eθf(X)

]
; then m′(θ) = E

[
f(X)eθf(X)

]
. Write this as

m′(θ) = E
[
F (X,X ′)eθf(X)

]
=

1

2
E
[
F (X,X ′)

(
eθf(X) − eθf(X′)

)]
via the antisymmetry of F and the exchangeability of (X,X ′).

We’ll use the inequality

|ex − ey| ≤ 1

2
|x− y|(ex + ey). (24)

To see this, suppose y < x;

ex − ey =

∫ 1

0

d

dt

(
etx+(1−t)y

)
dt

= (x− y)

∫ 1

0
etx+(1−t)y dt

≤ (x− y)

∫ 1

0
(tex + (1− t)ey) dt by Jensen’s inequality

= (x− y)
1

2
(ex + ey) ,

and similarly for y ≥ x.
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Now

|m′(θ)| =
∣∣∣E[F (X,X ′)eθf(X)

]∣∣∣
≤ 1

2

∣∣∣E[F (X,X ′)
(
eθf(X) − eθf(X′)

)]∣∣∣
≤ |θ|

4
E
[∣∣F (X,X ′)

(
f(X)− f(X ′)

)∣∣ (eθf(X) + eθf(X
′)
)]

≤ |θ|
2

E
[∣∣F (X,X ′)

(
f(X)− f(X ′)

)∣∣ eθf(X)
]

by exchangeability of (X,X ′)

= |θ|E
[
v(X)eθf(X)

]
.

If v(X) ≤ Bf(X) + C, then the above gives

|m′(θ)| ≤ |θ|
(
BE
[
f(X)eθf(X)

]
+ CE

[
eθf(X)

])
= B|θ|m′(θ) + C|θ|m(θ).

Now, m is a convex function, with E[f(X)] = m′(0) = 0 and taking the value m(0) = 1 at
its minimum. Suppose 0 < θ < 1/B; then

m′(θ)(1−Bθ) ≤ Cθm(θ).

Thus
d

dθ
logm(θ) =

m′(θ)

m(θ)
≤ Cθ

1−Bθ
for 0 < θ < 1/B. Therefore,

logm(θ) =

∫ θ

0

d

dt
logm(t) dt

≤
∫ θ

0

Ct

1−Bt
dt

≤ 1

1−Bθ

∫ θ

0
Ct dt

=
Cθ2

2(1−Bθ)
.

So, for θ > 0,

P{f(X) ≥ t} = P
{
eθf(X) ≥ eθt

}
≤ e−θtm(θ)

≤ exp

(
−θt+

Cθ2

2(1−Bθ)

)
if 0 < θ < 1/B.
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Taking

θ =
t

C +Bt
∈
(

0,
1

B

)
,

we get the desired upper bound, and P(f(X) ≤ −t) can be bounded similarly.

(c): Using a similar manipulation to that in the proof of (a),

E
[
f(X)2k

]
= E

[
f(X)2k−1F (X,X ′)

]
=

1

2
E
[(
f(X)2k−1 − f(X ′)2k−1

)
F (X,X ′)

]
. (25)

Also, similarly to (24), we can show∣∣∣x2k−1 − y2k−1∣∣∣ ≤ 2k − 1

2
|x− y|

∣∣∣x2k−2 + y2k−2
∣∣∣ .

Plugging this into (25), we get

E
[
f(X)2k

]
≤ (2k − 1)E

[
v(X)f(X)2k−2

]
.

Applying Hölder’s inequality with 1/p = 1− 1/k and 1/q = 1/k gives

E
[
f(X)2k

]
≤ (2k − 1)

(
E
[
f(X)2k

])(k−1)/k (
E
[
v(X)k

])1/k
and so (

E
[
f(X)2k

])1/k
≤ (2k − 1)

(
E
[
v(X)k

])1/k
.

This completes the proof of (c). 2

Example 31 Suppose we have the Curie-Weiss model on n spins: for σ = (σ1, . . . , σn),

P{σ} =
1

Zβ
exp

β
n

∑
1≤i<j≤n

σiσj

 .

Let

m(σ) =
1

n

∑
i

σi.

Construct X ′ by taking one step in the Gibbs sampler (also known as the Glauber dynamics).
Set F (X,X ′) = σI − σ′I where I is the updated index. Then

f(X) = E
[
F (X,X ′) |X

]
≈ m(σ)− tanh(βm(σ)).

We’ll do this in the next lecture.
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Recall the following theorem from the previous lecture.

Theorem 32 Suppose (X,X ′) is an exchangeable pair,
F (X,X ′) is an anti-symmetric function,
f(X) = E(F (X,X ′) | X),
and let

v(X) = 1
2 E
(
|(f(X)− f(X ′))F (X,X ′)|

∣∣X)
If v(X) ≤ Bf(X) + C, for B,C ≥ 0
then,

P(|f(X)| ≥ t) ≤ 2 exp

(
− t2

2Bt+ 2C

)
(26)

For example:
Suppose {ai,j}ni,j=1 are constants in [0, 1] (after translation and scaling).

Let π be a uniform random permutaton of (1, 2, . . . , n).

Let

X =
n∑
i=1

ai,π(i), (Hoeffding statistics).

Here we could want concentration inequalities for the random variable X.

Theorem 33

P (|X −E(X)| ≥ t) ≤ 2 exp

(
− t2

2t+ 4 E(X)

)
(27)

Interpretation: for small E(X), the density of X has an exponential tail, for large E(X),
the density of X has a Gaussian tail.

Proof: Let π′ = π ◦ (I, J) where (I, J) is a random transposition. We allow I = J . Let

X ′ =
n∑
i=1

ai,π′(i)
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and
F (X,X ′) = 1

2n(X −X ′) (clearly anti− symmetric).

Now,

X −X ′ = n

2

(
aI,π(I) + aJ,π(J) − aI,π(J) − aJ,π(I)

)
.

It follows that

E(F (X,X ′) | π) =
n

2

∑
i,j

(
ai,π(i) + aj,π(j) − ai,π(j) − aj,π(i)

)
× 1

n2

=
1

2n

2n
∑
i

ai,π(i) − 2
∑
i,j

ai,j


= X −E(X).

Since the right hand side depends only on X, therefore f(X) = E(F (X,X ′) | X) = X −
E(X). From this it follows that

1
2 E

(∣∣(f(X)− f(X ′))F (X,X ′)
∣∣ | π) =

n

4
E
(
(X −X ′)2 | π

)
=

n

4
· 1

n2

∑
i,j

(
aI,π(I) + aJ,π(J) − aI,π(J) − aJ,π(I)

)2
(ai,j ∈ [0, 1])

≤ 1

4n

∑
i,j

(
aI,π(I) + aJ,π(J) + aI,π(J) + aJ,π(I)

)
= X + E(X)

= f(X) + 2 E(X).

Combining, we get
v(X) ≤ f(X) + 2 E(X). (28)

Thus, by using Theorem 1, with B = 1 and C = 2 E(X),

P (|X −E(X)| ≥ t) ≤ 2 exp

(
− t2

2t+ 4 E(X)

)

2

Theorem 2 gives a Bernstein-type inequality. Compare the above to Azuma-Hoeffding
bounds:
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If X ∼ Binomial(n, p), then

P (|X −E(X)|) = P (|X − np|) ≤ 2 exp

(
− t

2

2n

)
This shows that the deviations will be of order

√
n. However, this bound does not hold for

very small p. See also, Bennett’s inequality.

The Curie-Weiss Model

In the Curie-Weiss model, the object of interest is a vector of n spins,

σ = (σ1, . . . , σn) ∈ {−1, 1}n.

The probability distribution of the spin assignments follows a Gibbs measure,

P(σ) = Z−1β exp

β
n

∑
i<j≤n

σiσj

 , β ≥ 0, Zβ = normalization constant. (29)

For β = 0, there will be a uniform distribution on spin configurations. Otherwise, configu-
rations will have different energies, or probabilities based on the Gibbs measure, depending
on the number of (+1) and (−1) spins. For a particular setting of the numbers of (+1) and
(−1) spins, there may be many configurations. So, the entropy is defined as the log of the
number of such configurations, given the numbers of spins. This model is equivalent to an
Ising model on a complete graph.

The magnetization, m(σ), is defined as the average of the spins,

m(σ) =
1

n

n∑
i=1

σi ∈ [−1, 1]. (30)

The physical interpretation of the model is to treat the spins as atom or orientable units of
a magnetic material and β as related to temperature. More specifically,

β =
1

kT
,

where T is the temperature and 1
k is the Curie temperature. For β ≤ 1, or high temper-

atures, the magnetization of the material will be small, m(σ) ≈ 0, with high probability.
However, for β > 1 there will likely be a preponderance of (+1) or (−1) spins, yielding a
substantial magnetization such that m− tanh(βm) ≈ 0 with high probability.
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Figure 1: Magnetization m and tanh(βm) versus m for β = 3.

From an initial spin configuration σ, we can construct a new configuration σ′ through a
Gibb’s sampling proceedure. First an index I, 1 ≤ I ≤ n is chosen at random. Then σI is
replaced by σ

′
I , where σ

′
I is drawn from the conditional distribution given (σj)j 6=I .

Exercise 34 Show that (σ, σ
′
) is an exchangeable pair.

Let F (σ, σ
′
) = σI − σ

′
I = n(m(σ)−m(σ

′
)). So,

E
(
F (σ, σ

′
) | σ

)
=

1

n

n∑
i=1

E(σi − σ
′
i | σ)

= m(σ)− 1

n

n∑
i=1

E(σ
′
i | σ).

Exercise 35 Show,

E(σ
′
i | σ) = tanh

β
n

∑
j,j 6=i

σj


.

Use, P(σ
′
i | σ) ∝ exp

(
β
n

∑
j,j 6=i

σj

)
and tanh(x) = ex−e−x

ex+e−x .
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Let

mi(σ) =
1

n

∑
j,j 6=i

σj = m(σ)− σi
n
. (31)

Note that |m−mi| = 1
n , ∀i. Now,

f(σ) ≡ E(F (σ, σ
′
) | σ)

= m(σ)− 1

n

n∑
i=1

tanh(βmi(σ)).

Exercise 36 Show that ∣∣∣f(σ)− f(σ
′
)
∣∣∣ ≤ 2(1 + β)

n
.

Hint: use the fact that tanh(x) is Lipschitz.

Continuing, using
∣∣∣F (σ, σ

′
∣∣∣ ≤ 2, we have

v(σ) = 1
2 E

(∣∣∣f(σ)− f(σ
′
)
∣∣∣ ∣∣∣F (σ, σ

′
)
∣∣∣ | σ)

≤ 1
2 · 2 ·

2(1 + β)

n
=

2(1 + β)

n

≤ 2(1 + β)

n
.

Thus, using Theorem 1 with B = 0 and C = 2(1+β)
n , we get

P(|f(σ)| ≥ t) ≤ 2 exp

(
− nt2

4(1 + β)

)
.

It is easy to see that

|(m(σ)− tanh(βm(σ)))− f(σ)| ≤ β

n
.

Thus,

P

(
|m(σ)− tanh(βm(σ))| ≥ β

n
+ t

)
≤ 2 exp

(
− nt2

4(1 + β)

)
,∀t ≥ 0.

13-49



STAT C206A / MATH C223A : Stein’s method and applications 1

Lecture 14

Lecture date: Sept 28, 2007 Scribe: John Zhu

18 Some final remarks about the Curie-Weiss concentration

In the Curie Weiss model, if m(σ) = 1
n

∑
σi, then

P

(
|m− tanh(βm)| ≥ β

n
+ t

)
≤ exp

(
− nt2

4(1 + β)

)
.

This implies that m− tanh(βm) = O(1/
√
n) which is the optimal result when β 6= 1.

At β = 1,m− tanh(βm) � n−3/4.

For β < 1 and all x, |x− tanh(βx)| ≥ (1− β)|x| and thus

|m(σ)| ≤ |m(σ)− tanh(βm(σ))|
1− β

= O(1/
√
n).

In particular Pβ(|m(σ)| > β/n+ t) ≤ 2 exp(−n(1−β)2t2
4(1+β) ).

When β = 1, P (|m(σ)| ≥ t) ≤ C exp(−cnt4) where C, c are not dependent on n. This
implies m = O(n−1/4). Using Stein’s method one can further show that n1/4m(σ) converges
in distribution to Ce−x

4/12.

Exercise 1: Prove the above inequality using the exchangeable pair theorem.

Sketch: Use part (c) of the theorem. Use P (|m| ≥ t) ≤ E(m2k)
t2k

and optimize over k. Recall:
f(σ) = m(σ)−1/n

∑
tanh(βm(σ)), show that when β = 1, |f(σ)−f(σ′)| ≤ cm(σ)2/n+c/n2.

Also, |m(σ)|3 ≤ C|f(σ)|+ C|m(σ)|/n. Now combine.

19 KMT Strong Embedding

Theorem. (Komlós-Major-Tusnády) Suppose ε1, ε2, . . . are i.i.d. with finite moment gen-
erating functions in a neighborhood of 0 with mean 0 and variance 1. Let Sn =

∑n
i=1 εi. We
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can construct a version of (Sk)k≥0 and a standard Brownian motion B on the same space
such that for all n, and t ≥ 0

P (max1≤k≤n|Sk −Bk| ≥ C log n+ t) ≤ Ke−lt

where C,K, l depend only on the distribution of ε1.

We will prove this result for the simple random walk using ideas from Stein’s method. We
proceed in a series of lemmas.

Lemma 37 Let n be a positive integer and suppose A is a continuous map from Rn to the
set of n× n positive semidefinite matrices. Suppose the ‖A‖ is bounded by a b <∞. Then
there exists a probability measure µ such that if random variable X ∼ µ then for all θ ∈ Rn,

E exp〈θ,X〉 ≤ exp(b‖θ‖2) and E〈X,∇f(X)〉 = E Tr(A(X)Hessf(X))

for all f ∈ C2(Rn) such that E |f(X)|2,E ‖∇f(X)‖2,E |Tr(A(X)Hessf(X)| <∞.

Proof: Let K denote the set of all probability measures µ on Rn such that
∫
Rn xdµ = 0 and∫

exp〈θ, x〉dµ ≤ exp(b‖θ‖2) for all θ ∈ Rn. By Skorokhod representation and Fatou’s lemma
K is a nonempty, compact, and convex subset of the space V of finite signed measures on Rn.

Aside: K is closed, and compactness follows from tightness.

We now use the following:

Schauder-Tychonoff Fixed Point Theorem: A continuous map from a nonempty,
convex, compact subset K of a locally convex topological space into K has a fixed point.

To be continued.
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Proof of Lemma 1 (contd.) Recall that K is set of all probability measure µ on Rn
such that ∫

xµ(x) = 0 and

∫
exp〈θ, x〉µ(dx) ≤ exp(b‖θ‖2) ∀θ ∈ Rn.

We have proved that K is a nonempty, compact and convex subset of the space of all finite
signed measures which is a locally convex topological vector space.

Now fix h ∈ (0, 1). Define a map Th : K → V as follows. Given µ, let X and Z be
independent random vectors with X ∼ µ and Z ∼ standard gaussian law on Rn. Let Th(µ)
be the law of

(1− h)X +
√

2hA(X)Z,

where
√
A(X) is the positive definite square root of the matrix A(X). Recall that, for any

nonnegative definite B, its positive definite square root is defined as
√
B = U

√
ΛUT , where B = UΛUT is a spectral decomposition of B.

Linear algebra tells us that the transformation B 7→
√
B is continuous. In fact, ‖

√
B1 −√

B2‖ ≤ ‖B1 −B2‖1/2.

Claim : If 0 < h < 1 , then Th(K) ⊆ K.

E
(

(1− h)X +
√

2hA(X)Z
)

= 0 implies
∫
xTh(µ)(dx) = 0. For any θ ∈ Rn,∫

exp〈θ, x〉Th(µ)(dx) = E exp〈θ, (1− h)X +
√

2hA(X)Z〉

= E exp(〈θ, (1− h)X〉+ h〈θ,A(X)θ〉)
≤ exp(bh‖θ‖2)E exp〈θ, (1− h)X〉
≤ exp(bh‖θ‖2 + b(1− h)2‖θ‖2) ≤ exp(b‖θ‖2)

where the last step is a consequence of the easy inequality 1 − h + h2 ≤ 1 for h ∈ (0, 1).
Thus the claim has been proved.

Since, x 7→
√
A(x) is a continuous map, by continuous mapping theorem, Th : K → K is

continuous (in weak* topology). Hence, by the Schauder-Tychonoff fixed point theorem, Th
has a fixed point µh in K.

Suppose Xh ∼ µh. Let Yh := −hX +
√

2hA(X)Z. Thus Xh
d
= Xh + Yh. Take any

f ∈ C2(Rn) with ∇f and Hess f bounded and uniformly continuous. Fix h ∈ (0, 1), and
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note that
Ef(Xh + Yh) = Ef(Xh)

Also, by Taylor approximation, we have

f(Xh + Yh) = f(Xh) + 〈Yh,∇f(Xh)〉+
1

2
〈Yh,Hessf(Xh)Yh〉+Rh (32)

where Rh is the remainder term. Now, E〈Yh,∇f(Xh)〉 = −hE〈Xh,∇f(Xh)〉. On the other
hand,

E〈Yh,Hessf(Xh)Yh〉 = 2hE
(
ZT
√
A(Xh)(Hessf(Xh))

√
A(Xh)Z

)
+O(h3/2)

= 2hETr(A(Xh) Hess f(Xh)) +O(h3/2)

Also, from the conditions on function f , one can show that limh→0 h
−1E|Rh| = 0.

Since the collection {µh}0<h<1 ⊆ K, and K is compact, it has a limit point µ ∈ K as h→ 0.
Let X ∼ µ. From (32), after taking expectation and dividing by h, we have

E〈Xh,∇f(Xh)〉 = ETr(A(Xh)Hessf(Xh)) +O(h1/2) + h−1ERh.

Now, letting h→ 0, we get, by uniform integrability,

E〈X,∇f(X)〉 = ETr(A(X)Hessf(X)). (33)

Then, the probability µ satisfies the criteria of the theorem for ‘nice’ functions f ∈ C2(Rn)
with ∇f and Hess f bounded and uniformly continuous. The extension to more general f ,
as required in the lemma, can be done via standard approximation arguments. �

Next lemma tells us that if X and A as above, then the deviation of Xi and Xj can be
controlled by entries of A. An intelligent choice of A will thus lead to a greater control over
difference |Xi −Xj |.

Lemma 2 Let A(x) = ((aij(x))) and X be as in Lemma 1. Take any 1 ≤ i < j ≤ n. Let

vij(x) := aii(x) + ajj(x)− 2aij(x).

Then for all θ ∈ Rn,
E exp(θ|Xi −Xj |) ≤ 2E exp(2θ2vij(x)).

Proof. Take any positive integer k. Define f : Rn → R as

f(x) = (xi − xj)2k.

Then a simple calculation shows that

〈X,∇f(X)〉 = 2k(xi − xj)2k.
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and
Tr(A(X)Hessf(X)) = 2k(2k − 1)(xi − xj)2k−2vij(x).

By poitive definiteness of A, it is easy to see that vij(x) ≥ 0. An application of Hölder
inequality gives

E|Tr(A(X)Hessf(X))| ≤ 2k(2k − 1)
(
E(Xi −Xj)

2k
) k−1

k
(
Evij(X)k

) 1
k
.

From the identity (33), we can now, after a simple computation, conclude that

E(Xi −Xj)
2k ≤ (2k − 1)kEvij(X)k.

Now using e|x| ≤ ex + e−x = 2
∑∞

k=0
x2k

(2k)! , we get

E exp(θ|Xi −Xj |) ≤ 2
∞∑
k=0

θ2kE(Xi −Xj)
2k

(2k)!

≤ 2
∞∑
k=0

θ2k(2k − 1)kEvij(X)k

(2k)!

≤ 2

∞∑
k=0

θ2k2kEvij(X)k

k!
= 2E exp (2θ2vij(X))

where in the above step we use the following inequality

(2k − 1)k

(2k)!
≤ 2k

k!
.

This completes the proof. �

Lemma 3 Let ρ be a probability density function on R which is positive everywhere.
Suppose

∫∞
−∞ xρ(x)dx = 0 and

∫∞
−∞ x

2ρ(x)dx <∞. Define,

h(x) =

∫∞
x yρ(y)dy

ρ(x)
.

Let X ∼ ρ. Then
EXϕ(X) = Eh(X)ϕ′(X) (34)

for each absolutely continuous function ϕ such that both sides are well defined and
E|h(X)ϕ(X)| < ∞. Moreover, if h1 is another function satisfying (34) for all Lipschitz
ϕ, then h1 = h a.e.

Conversely, if Y is a random variable such that (34) holds with Y in place of X, for all
absolutely continuous ϕ such that |ϕ(x)|, |xϕ(x)| and |h(x)ϕ′(x)| are uniformly bounded,

then Y
d
= X.
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Proof. We will only prove the first claim of the theorem (that too partially !) which
is a direct application of integration by parts. Let u(x) := h(x)ρ(x). Note that since∫∞
−∞ xρ(x)dx = 0, u can be written as u(x) =

∫∞
x yρ(y)dy = −

∫ x
−∞ yρ(y)dy. Thus, u(x) > 0

for all x ∈ R. Also, lim|x|→∞ u(x) = 0 and by Fubini, it is easy to verify that
∫∞
−∞ u(x)dx =

Eh(X) = EX2 <∞. Then for any bounded Lipschitz function ϕ,∫ ∞
−∞

xϕ(x)ρ(x)dx = ϕ(x)(−u(x))
∣∣+∞
−∞ −

∫ ∞
−∞

ϕ′(x)(−u(x))dx

=

∫ ∞
−∞

ϕ′(x)h(x)ρ(x)dx.

This proves one part of the lemma.

Exercise 38 Finish the rest of the proof.
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20 The general plan of attack

Recall the setup from the last lecture: we have iid ±1 symmetric random variables ε1, ε2, . . . ,
and

Sn =
n∑
i=1

εi (35)

is the simple random walk on the integers. Our goal is to construct a version of (Sn)n≥0
and Brownian motion (Bt)t≥0 on the same probability space such that for all n

max
i≤k≤n

|Sk −Bk| = O(log n) . (36)

A cartoon of the coupling is shown in Figure 20.

Figure 2: Coupling between the simple random walk and Brownian motion. At time n the
variance is

√
n but the maximum deviation between the two processes is at most O(log n).

Figure 3: A tighter coupling between a simple random walk and the Brownian bridge,
conditioned on Sn = Bn.

The original KMT proof used an explicit construction of the coupling between the random
walk and Brownian motion, whereas we rely on the Schauder-Tychonoff fixed point theo-
rem. Our line of attack to construct the coupling is to couple a conditional process to the
Brownian bridge. Figure 2 shows this coupling.

The induction hypothesis we will use is the following: given a possible value Sn, we can
construct a random walk S0, S1, . . . , Sn with Sn having that value and a Brownian motion
(Bt)t≤n conditioned to have Bn = Sn such that for all λ < λ0 we have

E exp

(
λmax
i≤n
|Si −Bi|

)
≤ exp

(
C log n+

Kλ2S2
n

n

)
, (37)
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where C, K, and λ0 must be chosen appropriately.

To see how to use this hypothesis, fix n and the value of Sn. Take n/3 ≤ k ≤ 2n/3 and
assume that the induction hypothesis holds for all n′ < n. The main step is to do a pointwise
coupling of Sk with Bk such that the deviation is at most O(1). Then we condition on a
value for Sk and use the induction hypothesis to couple (Si)i≤k with (Bi)i≤k and (Si)k≤i≤n
with (Bi)k≤i≤n. Then by piecing it together you get that the result holds for n as well.

21 Pointwise coupling

The central question we have to answer is this : how do we couple something that is almost
Gaussian to something that is exactly Gaussian such that we obtain exponentially decaying
tails?

Suppose X is a random variable with density ρ, EX = 0 and EX2 <∞. Let

h(x) =

∫∞
x yρ(y)dy

ρ(x)
. (38)

We know that for all well-behaved ϕ,

E[Xϕ(X)] = E[h(X)ϕ′(X)] . (39)

The idea is that if h(X) ≈ σ2 with high probability, then X is approximately Gaussian with
variance σ2. Thus our objective is to construct a joint distribution on (X,Z) with marginals
X ∼ ρ and Z ∼ N (0, σ2) such that the difference X − Z is controlled by h(X)− σ2.

Let

A(x1, x2) =

(
h(x1) σ

√
h(x1)

σ
√
h(x1) σ2

)
. (40)

Note that A(x1, x2) does not depend on x2, and that it is positive semidefinite. By Lemma
1 we can construct a probability measure µ on R2 such that if (x1, x2)

T ∼ µ then

E

[〈(
X1

X2

)
,∇f

(
X1

X2

)〉]
= E [Tr (A(X1, X2) Hess f(X1, X2))] (41)

for all suitable f . Rewriting this a bit:

E

[
X1

∂f

∂X1
+X2

∂f

∂X2

]
= E

[
h(X1)

∂2f

∂X2
1

+ 2σ
√
h(X1)

∂2f

∂X1∂X2
+ σ2

∂2f

∂X2
2

]
. (42)

Now take ϕ : R→ R such that |ϕ(x)|, |xϕ(x)| and |h(x)ϕ′(x)| are uniformly bounded, and
let Φ be an antiderivative of ϕ so that Φ′ = ϕ.
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Consider f(x1, x2) = Φ(x1). Then all the x2 terms in (42) vanish, so

E[X1ϕ(X1)] = E[h(X1)ϕ
′(X1)] , (43)

and by the previous lemma X1 ∼ ρ. Similarly, taking f(x1, x2) = Φ(x2), we get

E[X2ϕ(X2)] = σ2 E[ϕ′(X2)] , (44)

so X2 ∼ N (0, σ2). Note that the off-diagonal terms in (40) vanish for these two choices of
f . If we set those terms to 0 then X1 and X2 would be independent.

By an earlier Lemma, we now have the bound:

E exp (θ|X1 −X2|) ≤ 2 E exp
(
2θ2v12(x1, x2)

)
(45)

= 2 E exp
(
2θ2(a11(x1, x2) + a22(x1, x2)− 2a12(x1, x2))

)
(46)

= 2 E exp
(

2θ2(h(x1) + σ2 − 2σ
√
h(x1))

)
(47)

= 2 E exp
(

2θ2(
√
h(x1)− σ)2

)
. (48)

Remark: In a sense, the choice of A in (40) is the tightest coupling possible. Consider the
following alternate choice for A:

A(x1, x2) =

(
h(x1) h(x1) ∧ σ2

h(x1) ∧ σ2 σ2

)
. (49)

For this A we get v12(x1, x2) = |h(x1)−σ2|. In coupling h(Sn) = n+O(
√
n), so v12(x1, x2) =

O(
√
n). This choice corresponds to the Skorohod embedding, which gives

max
1≤k≤n

|Sk −Bk| = O(n1/4) . (50)

This bound on the deviation is the best possible for summands with finite 4-th moment. For
finite p-th moment we can get O(n1/p). The assumptions in the KMT are that the moment
generating function is finite in a neighborhood of 0, which gives a O(log n) deviation.

Why do we choose this particular function h(·)? Suppose X1, X2, . . . , Xn are iid, distributed
according to the density ρ, with mean 0 and unit variance, and define h(·) as in (38). Let

S =

n∑
i=1

Xi . (51)

What is the function hS(·) corresponding to the density of S? If we define as before
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Si = S −Xi, we can calculate, using (39) :

E[Sϕ(S)] =

n∑
i=1

E [Xiϕ (Si +Xi)] (52)

=
1√
n

n∑
i=1

E
[
ϕ′ (Si +Xi)h(Xi)

]
(53)

= E

[
ϕ′(S)

(
n∑
i=1

h(Xi)

)]
. (54)

Now, it is easy to check that Eh(Xi) = EX2
i = 1. Therefore, using (39) again we see that

hS(S) = E

[
n∑
i=1

h(Xi)
∣∣∣ S] = n+O(

√
n). (55)

We now show the O(1) bound on the coupling:

(
√
hS(S)− σ)2 = n

((
1 +O

(
1√
n

))1/2

− 1

)2

(56)

= n

(
1 +O

(
1√
n

)
+ . . .− 1

)2

(57)

= O(1) . (58)
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Lemma 3 Suppose W is a random variable with EW = 0 and EW 2 <∞. Let T be another
random variable defined on the same probability space as W , satisfying

EWϕ(W ) = ETϕ′(W )

for all Lipschitz function ϕ. Suppose |T | is a.s. bounded by a constant. Then, given any
σ2 > 0, we can construct a version of W and a N(0, σ2) random variable Z on the same
probability space such that for any θ ∈ R,

E exp(θ |W − Z|) ≤ 2E exp(2θ2σ−2(T − σ2)2).

Exercise 39 Relax the condition that “|T | is a.s. bounded by a constant”.

Before going to the proof of lemma 3, let us state some exercises which can probably be
solved using Stein’s method.

Exercise 40 In the Curie-Weiss model for β < 1, prove a CLT for the magnetization
n−1

∑n
i=1 σi.

Exercise 41 In the Curie-Weiss model for β < 1, prove a version of Tusnády’s lemma for
the sum of spins.

Exercise 42 For the Ising model on the cycle of n points, prove a version of Tusnády’s
lemma for the sum of spins.

Exercise 43 For the Ising model on the cycle (or chain) of n points, consider the process
(Sk)

n
k=1 where Sk =

∑k
i=1 σi. Prove a version of the KMT theorem for this process.

Now let us prove lemma 3.

Proof: Recall that by assumption we have, EWϕ(W ) = ETϕ′(W ) = E(E(T |W )ϕ′(W ))
for all Lipschitz ϕ. We’ll prove the lemma in two steps.

First assume that W has a density ρ with respect to the lebesgue measure which is positive
and continuous everywhere. Define the function h by

h(x) =

∫∞
x yρ(y)dy

ρ(x)
.
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Then by uniqueness of h (see the second assertion of Lemma 3), we have

h(x) = E(T |W = x).

Note that h is nonnegative by definition. So we can define the function A from R2 into the
set of 2× 2 nonnegative definite matrices as

A(x1, x2) =

(
h(x1) σ

√
h(x1)

σ
√
h(x1) σ2

)
.

Continuity of ρ implies that h is continuous. Since T is bounded a.s., so is h (because
h = E(T |W )). Hence using lemma 1 we can construct a random vector X = (X1, X2) such
that

E〈X,∇f(X)〉 = E Tr(A(X)Hessf(X))

for all f ∈ C2(R2) such that the expectations E |f(X)|2, E ‖∇f(X)‖2 and
E |Tr(A(X)Hessf(X))| are finite.

By the observation made in the last lecture we have X1 ∼ ρ and X2 ∼ N(0, σ2). Also by
lemma 2 we have for all θ ∈ R,

E exp(θ |X1 −X2|) ≤ 2E exp(2θ2υ12(X1, X2))

where

υ12(x1, x2) = a11(x1, x2) + a22(x1, x2)− 2a12(x1, x2)

= h(x1) + σ2 − 2σ
√
h(x1)

= (
√
h(x1)− σ)2 =

(h(x1)− σ2)2

(
√
h(x1) + σ)2

≤ (h(x1)− σ2)2

σ2
.

The last inequality holds because h(x) ≥ 0. Since h(X1) has the same distribution as h(W )
and h(W ) = E(T |W ) using Jensen’s inequality for conditional expectation we have

(Eh(X1)− σ2)2 = (E(T |W )− σ2)2 ≤ E((T − σ2)2|W )

and
exp(2θ2σ−2E((T − σ2)2|W )) ≤ E(exp(2θ2σ−2(T − σ2)2)|W ).

Hence, if W has a density ρ which is continuous and positive everywhere we can construct
a version of W and a N(0, σ2) random variable Z on the same probability space such that
for any θ ∈ R,

E exp(θ |W − Z|) ≤ 2E exp(2θ2σ−2(T − σ2)2).

Let us now drop the assumption that W has a density ρ which is continuous and positive
everywhere. Take any ε > 0. Let Wε = W + εY where Y is an independent standard
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gaussian random variable. If ν denotes the law of W on the real line, then Wε has the
probability density function

ρε(x) =

∫ ∞
−∞

1√
2πε

e−
(x−y)2

2ε2 dν(y).

ρε is positive and continuous everywhere by the above representation and DCT. Again, note
that for any Lipschitz function ϕ,

E(Wεϕ(Wε)) = E(Wϕ(W + εY )) + εE(Y ϕ(W + εY ))

= E(Tϕ′(W + εY )) + ε2E(ϕ′(W + εY ))

= E((T + ε2)ϕ′(Wε))

Thus, by what we have already proved, we can construct a version of Wε and a N(0, σ2 +ε2)
random variable Zε on the same probability space such that for all θ ∈ R,

E exp(θ |Wε − Zε|) ≤ 2E exp

(
2θ2((T + ε2)− (σ2 + ε2))2

σ2 + ε2

)
≤ 2E exp

(
2θ2(T − σ2)2

σ2

)
.

Let µε be the law of the pair (Wε, Zε) on R2. The family {µε}ε>0 is tight by the bound
on the moment generating function in lemma 1. Let µ0 be a limit point as ε → 0 and let
(W0, Z0) ∼ µ0. Then W0 has the same law as W , and Z0 is standard gaussian. By Skorohod
representation and Fatou’s lemma we have

E exp(θ |W0 − Z0|) ≤ lim inf
ε→0

E exp(θ |Wε − Zε|) ≤ 2E exp

(
2θ2(T − σ2)2

σ2

)
.

This completes the proof. 2

Exercise 44 Show that the assumption that EWϕ(W ) = ETϕ′(W ) for all Lipschitz func-
tion ϕ implies that W1{W 6=0} has a density w.r.t the lebesgue measure on R. (Note that,
in fact, W can have positive mass at 0. Consider the random variable W = ZI where
Z ∼ N(0, 1) and I ∼ Bin(1, p) are independent. Then EWϕ(W ) = EIϕ′(W ) for all Lips-
chitz ϕ, but W = 0 with probability 1− p.)

Remark 45 The matrix A(x1, x2) used in the proof of lemma 3 has a different interpreta-
tion. It is possible to define two stochastic processes (Xt)t≥0, (Zt)t≥0 such that (Xt)t≥0 has
stationary distribution with density ρ and (Zt)t≥0 is an Ornstein-Uhlenbeck process with
stationary distribution N(0, σ2) and the matrix A(Xt, Zt) is the volatility matrix of the
process (Xt, Zt)t≥0. But it is difficult to get similar bound on m.g.f using usual stochastic
process methods.
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22 Tusnády’s Lemma

Lemma 46 (Tusnády’s Lemma, Lemma 3.10 in handout) Let ε1, . . . , εn be i.i.d.
symmetric ±1 random variables and Sn =

∑n
i=1 εi be the simple random walk. Then

there exist universal constants κ and →> 0 such that it is possible to construct Sn and Zn
(Zn ∼ N (0, 1)) on the same probability space so that for all |θ| ≤→, E exp(θ|Sn−Zn|) ≤ κ.

Implication: P (|Sn − Zn| ≥ t) ≤ e−→tκ. (We are not worried about dependence on θ,
only care about fixed →.)

We will use Lemma 3.4 from the previous lecture:

Lemma 47 (Lemma 3.4 in handout) If W is a random variable with mean 0, finite
variance, and EWϕ(W ) = ETϕ′(W ) for all Lipschitz ϕ, where |T | is a.s. bounded, then
for any σ > 0 it is possible to construct Z ∼ N (0, σ2) such that E exp(θ|W − Z|) ≤
2E exp(2θ2(T − σ2)2/σ2) for all θ > 0.

The idea of the proof is as follows. Take W̃ = Sn + Y , where Y ∼ Unif[−1, 1] independent
of Sn, and show that

EW̃ϕ(W̃ ) = ETϕ′(W̃ ), (59)

where T = n− SnY + (1− Y 2)/2. Supposing we can show this, take σ2 = n. Then

(T − σ2)2

σ2
=

(SnY − 1−Y 2

2 )2

n
≤

2S2
n + 1

2

n
,

where the inequality follows from the fact that (a+ b)2 ≤ 2(a2 + b2) and Y ∈ [−1, 1]. This

allows us to apply Lemma 3.4 to get that we can construct W̃ and Z ∼ N (0, 1) on the same
space such that

E exp(θ|W̃ − Z|) ≤ 2E exp

(
2θ2

(
2S2

n + 1
2

n

))
. (60)

“Famous Trick”: We know the moment generating function for ξ ∼ N (0, 1) is Eetξ = et
2/2.

It follows (by first conditioning on Sn) that

EeαS
2
n/2n = Ee

√
αξSn/

√
n,

18-63



for any α > 0. Next, conditioning on ξ, we get that the above is equal to

E
(
E
(
e
√
αξε1/

√
n
)n)

= E

(
coshn

(√
αξ√
n

))
.

It is an easy exercise to show that cosh(x) ≤ ex
2/2 from the series expansion. Using this,

we have that for α < 1

E
(
eαS

2
n/2n

)
≤ E

[(
e
αξ2

2n
)n]

= Eeαξ
2/2 <∞.

Together with equation (60) this completes the proof of Tusnády’s lemma, assuming (59).
We proceed with showing that (59) holds. We will use the following lemma.

Lemma 48 (Lemma 3.7 in handout) Suppose X,Y are independent random variables,
X ∼ Unif{±1}, Y ∼ Unif[−1, 1]. Then for all Lipschitz ϕ,

EXϕ(X + Y ) = E[(1−XY )ϕ(X + Y )]

and

EY ϕ(X + Y ) = E

[(
1− Y 2

2

)
ϕ′(X + Y )

]

Proof: From the densities of X and Y we have

E[(1−XY )ϕ′(X + Y )] =
1

4

∫ 1

−1
(1 + y)ϕ′(−1 + y)dy +

1

4

∫ 1

−1
(1− y)ϕ′(1 + y)dy.

The proof follows by applying integration by parts to both terms. The other identity is
proved similarly, and the proof is omitted. 2

For ease of notation, write

S = Sn S− = Sn−1 =
n−1∑
i=1

εi X = εn.

Let E− denote the conditional expectation given ε1, . . . , εn−1. By Lemma 48,

E−[Xϕ(W̃ )] = E−Xϕ(S− +X + Y )] = E−[(1−XY )ϕ′(S− +X + Y )],

and taking expectations gives

Eεnϕ(W̃ ) = E[(1− εnY )ϕ′(W̃ )].
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By symmetry of ε1, . . . , εn we can take a sum over the previous equation to get

ESϕ(W̃ ) = E[(n− SY )ϕ′(W̃ )].

Applying Lemma 48 once again, we have

EY ϕ(W̃ ) = EY ϕ(S− +X + Y ) = E

[(
1− Y 2

2

)
ϕ′(W̃ )

]
.

Adding these last two equations gives the desired result of equation (59), i.e.

EW̃ϕ(W̃ ) = E(S + Y )ϕ(W̃ ) = E

[(
n− SnY +

(1− Y 2)

2

)
ϕ′(W̃ )

]
= ETϕ′(W̃ ).

This concludes the proof of Tusnady’s Lemma.

23 Bounds on a Pinned Random Walk

Lemma 49 (Lemma 3.4 in handout) Suppose ε1, . . . , εn are each in {−1, 1}. Let π be
a uniform random permutation of {1, . . . , n} and for each k, let Sk =

∑k
i=1 επ(i). Let

Wk = Sk − k
nSn. Then for all θ ∈ R, for all k, 1 ≤ k ≤ n, and for all possible values of Sn,

E exp

(
θWk√
k

)
≤ eθ2 .

The proof is by the method of exchangeable pairs. We only need this lemma in order to
prove the next lemma, so the proof is omitted here. Note that the bound does not depend
on Sn; this is because Wk fluctuates the most when Sn = 0. When Sn = n, for example,
εi = 1 for all i.

Lemma 50 (Lemma 3.6 in handout) There exists a universal constant α0 such that for
all n and all possible values of Sn, any k with n

3 ≤ k ≤
2n
3 , and any α ≤ α0,

E exp

(
αS2

n

k

)
≤ exp

(
1 +

3

4

αS2
n

n

)
.
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Proof: Letting Z ∼ N (0, 1), we have

E exp

(
αS2

k

k

)
(a)
= E exp

(√
2α

k
ZSk

)
(b)
= E exp

(√
2α

k
ZWk +

√
2α

k
Z
kSn
n

)
(c)

≤ E exp

(
2αZ2 +

√
2α

k
Z
kSn
n

)
(d)
=

1√
1− 4α

exp

(
αkS2

n

(1− 4α)n2

)
,

where the steps follow by (a) same trick (moment generating function of standard normal)
as presented earlier; (b) definition of Wk; (c) Lemma 49; (d) taking expectation with respect
to Z, as long as α < 1/4. The desired result follows by noting the range of possible k and
choosing α0 sufficiently small. 2

18-66



STAT C206A / MATH C223A : Stein’s method and applications 1

Lecture 19

Lecture date: Oct. 10, 2007 Scribe: Laura Derksen

24 Tsunády’s lemma for a given total sum

Let ε1, ..., εn be i.i.d. symmetric random variables taking values in {−1, 1} and let Sn =∑n
i=1 εi. Let π be a uniformly random permutation, and let Sk =

∑k
i=1 επ(i) and Wk =

Sk − kSn
n .

Lemma 51 (Lemma 3.8 in handout) There exist universal constants c > 0 and θ0 > 0
such that for any n, any value of Sn, and any fixed k such that n

3 ≤ k ≤ 2n
3 , it is possible

to construct Wk and Zk (where Zk ∼ N(0, k(n− k)/n)) on the same probability space such
that for any θ with |θ| < θ0

E[exp(θ|Wk − Zk|)] ≤ exp

(
1 +

cθ2S2
n

n

)
.

Proof: Fix k, and for now denote Wk by W . Define W̃ = W + Y where Y is a uniform
random variable on [−1, 1] and is independent of all of the other random variables we’ll use.
We would like to show that

E(W̃ϕ(W̃ )) = E(Tϕ′(W̃ ) (61)

for any Lipschitz function ϕ and

T =
1

n

k∑
i=1

n∑
j=k+1

aij + (1− Y 2)/Z (62)

where
aij = 1− επ(i)επ(j) − (επ(i) − επ(j))Y. (63)

We can expect that T ≈ k(n− k)/n. In fact, it can be shown that if σ2 = k(n− k)/n then

(T − σ2)2

σ2
≤ C

(
S2
k

k
+
S2
n

n
+ 1

)
(64)

where C is a universal constant.

By Lemma 3.6, we know that

E[exp(θS2
k/k)] ≤ A exp(cθS2

n/n) (65)
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where A and c are constants.

The proof can now be completed using this and Lemma 3.4. Now let’s show (61).

Let us write

W = Sk −
kSn
n

=
1

n

k∑
i=1

n∑
j=k=1

(επ(i) − επ(j)) (66)

and notice that if we fix i and j and condition on (π(l))l 6∈{i,j}, then the conditional expec-
tation of (επ(i) − επ(j)) must be zero.

So, we fix i and j such that i ≤ k ≤ j and condition on (π(l))l 6∈{i,j}. Denote Sn by S and
let S− =

∑
l 6∈{i,j} επ(l). Let E− denote conditional expectation, and consider

E−[(επ(i) − επ(j))ϕ(W̃ )]. (67)

Case 1: if S 6= S−, that is, επ(i) = επ(j), then (67) = 0.

Case 2: if S = S−, that is, επ(i) = −επ(j), then let X = 1
2(επ(i) − επ(j)) = επ(i). So,

W = W− +X where

W− =

k∑
l=1

επ(l) − επ(i) −
kS

n
.

Now, using Lemma 3.7 we obtain

E−[(επ(i) − επ(j))ϕ(W̃ )] = E−[2Xϕ(W− +X + Y )]

= 2E−[(1−XY )ϕ′(W̃ )]

= E−[(2− (επ(i) − επ(j))Y )ϕ′(W̃ )].

If we define aij as in (63) above, then

aij =

{
2− (επ(i) − επ(j))Y if S = S−;

0 if S 6= S−.

Finally we obtain
E−[(επ(i) − επ(j))ϕ(W̃ )] = E−(aijϕ

′(W̃ )] (68)

and replace E− by E by taking expectations on both sides. If we again apply Lemma 3.7
we obtain (61). 2

Exercise 52 Prove Lemma 3.5.
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Lemma 53 (Lemma 3.9 in handout) For any n and any possible value of Sn we can
construct W0,W1, ...,Wn and Z0, Z1, ..., Zn where the Zi’s are jointly Gaussian with mean
zero and

Cov(Zi, Zj) =
(i ∨ j)(n− (i ∨ j))

n

such that for all λ ≤ λ0,

E[exp(λmax
i≤n
|Wi − Zi|)] ≤ exp

(
C log n+

Kλ2S2
n

n

)
(69)

where C, K, and λ0 are universal constants.

The proof is by induction: use exp(x ∨ y) ≤ ex + ey. To be continued.

19-69



STAT C206A / MATH C223A : Stein’s method and applications 1

Lecture 20

Lecture date: Oct 12, 2007 Scribe: Tanya Gordeeva

25 Proof of Lemma 3.9

Recall lemma 3.9 from the handout:

Lemma 54 (Lemma 3.9) There exist universal constants C,K, and λ0 such that, for any
n and for any possible value of Sn, we can construct a centered Gaussian process (Z0, . . . , Zn)

with Cov(Zi, Zj) = (i∧j)(n−(i∨j))
n such that

∀λ < λ0,E exp(λmax
i≤n
|Wi − Zi|) ≤ exp

(
C log n+

Kλ2S2
n

n

)
where Wi = Si − iSn

n .

Sketch of the proof:

Assume the result is true for all n′ < n. Fix k with n
3 ≤ k ≤

2n
3 .

1) Given Sn, construct (S,Z) where S has the distribution of Sk given Sn and Z follows

N(0, k(n−k)n ) such that E exp
(
θ
∣∣(S − kSn

n

)
− Z

∣∣) ≤ exp
(

1 + cθ2S2
n

n

)
for all θ < θ0. This is

possible by lemma 3.8.

Now construct (S0, . . . , Sk) as a simple random walk with Sk = S. Independently generate
a random walk (S′0, . . . , S

′
n−k) with S′n−k = Sn − S.

If (U0, . . . , Un) is defined as

Ui =

{
Si if i ≤ k
S + S′i−k if n ≥ i ≥ k

then (U0, . . . , Un) is a SRW conditioned to be Sn at n.

2) The next step is to generate the Brownian bridge. Let (Z0, . . . , Zk) and (Z ′0, . . . , Z
′
n−k)

be two independent Brownian bridges. Define (Y0, . . . , Yn) by

Yi =

{
Zi + i

kZ if i ≤ k
Z ′i−k + n−i

n−kZ if i > k
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The candidates for the coupling will be (U0, . . . , Un) and (Y0, . . . , Yn).

Let E∗ denote the conditional expectation given (S,Z). Apply induction to ensure that

E∗ exp

(
λmax

i≤k

∣∣∣∣(Si − i

k
S

)
− Zi

∣∣∣∣) ≤ exp

(
C log k +

Kλ2S2

k

)
and

E∗ exp

(
λ max
i≤n−k

∣∣∣∣(S′i − i

n− k
(Sn − S)

)
− Z ′i

∣∣∣∣) ≤ exp

(
C log(n− k) +

Kλ2(Sn − S)2

n− k

)

Let TL = maxi≤k
∣∣(Si − i

kS
)
− Zi

∣∣ and TR = maxi≤n−k

∣∣∣(S′i − i
n−k (Sn − S)

)
− Z ′i

∣∣∣. Let

T = |S − Z|. Verify that maxi≤n |Ui − Yi| ≤ max{TL + T, TR + T}.

So E exp(λmaxi≤n |Ui − Yi|) ≤ E exp(λ(TL + T )) + E exp(λ(TR + T )). Now,

E exp(λ(TL + T )) = E
[
E∗(exp(λTL))eλT

]
.

We bound the conditional expectation using induction, and apply the Cauchy-Schwarz
inequality. So

E exp(λ(TL + T )) ≤ E

(
exp

(
C log k +

Kλ2S2

k

)
eλT
)

≤ exp(C log k)

√
E

(
exp

(
2Kλ2S2

k

))
E(e2λT )

Note that this does not depend on Z. This is how this results from our use of the induction
hypothesis: For each n, and each possible value s of Sn, let ρns be a joint density of the
coupled process satisfying the induction hypothesis. Given (S,Z) = (s, z), the distribution
of ((S0, . . . , Sk), (Z0, . . . , Zk)) is simply ρns , which does not involve Z. So, conditional on S,
((S0, . . . , Sk), (Z0, . . . , Zk)) is independent of Z.

Now, by a previous lemma, we have that Ee2λT ≤ exp
(

1 + 4cλ2S2
n

n

)
. By the induction

hypothesis and lemma 3.6, we have

E exp

(
2Kλ2S2

k

)
≤ exp

(
1 +

2Kλ2S2
n

n

3

4

)

If K is sufficiently large compared to c, we can guarantee that 3
42K + 4c ≤ 2K. Choosing

such K and combining,

E exp(λ(TL + T )) ≤ exp

(
C log k +

Kλ2S2
n

n
+ 1

)
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Similarly,

E exp(λ(TR + T )) ≤ exp

(
C log(n− k) +

Kλ2S2
n

n
+ 1

)
Now C log k = C log n−C log n

k ≤ C log n−C log 3
2 since n

3 ≤ k ≤
2n
3 . Similarly, C log(n−

k) ≤ C log n− C log 3
2 .

Combining,

E exp(λmax
i 6=n
|Ui − Yi|) ≤ 2 exp

(
C log n− C log

3

2
+
Kλ2S2

n

n
+ 1

)
Choose C such that C log 3

2 > log 2 + 1 to complete the proof.

This gives the coupling for the Brownian bridge, but it requires some more work to move
to Brownian motion and move away from finite time. See handout for details.
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Exercise

Let X = (Xi,j)1≤i<j≤n denote the Erdös-Renyi random graph G(n, p). Let

f(X) = #triangles(X)− E(#triangles(X)).

Obtain concentration inequalities for f(X) by explicitly constructing an antisymmetric F
and an exchangeable pair (X,X ′) such that

E[F (X,X ′)|X] = f(X).

and using part (b) the concentration theorem (lecture 12, Sept 24). Hints: independently
regenerate a random edge. f is boolean, so it’s a polynomial: use polynomials. Thoughts:
this will probably give sharp results when p is fixed, n ↑ ∞, but will probably not give
sharp results when p ↓ 0, n ↑ ∞. A serious research problem would be to use part (c) of the
theorem and optimize over k to get the correct tail bound in this latter case3.

26 Spin Glasses: Sherrington-Kirkpatrick Model

This lecture will cover definitions concerning the SK model of spin glasses and state results
to be proven in later lectures. Let g = (gij)1≤i<j≤N be a collection of iid N(0, 1) random
variables. Collectively, these random variables are known as the disorder. Given the dis-
order, the spin configuration σ = (σ1, ..., σN ) ∈ {0, 1}N follows a Gibbs distribution with
conditional density proportional to

exp

 β√
N

∑
1≤i<j≤N

gijσiσj + h

N∑
i=1

σi


Let

ZN (β, h, g) =
∑

σ∈{−1,1}N
exp

 β√
N

∑
i<j

gijσiσj + h

N∑
i=1

σi


3Optimal results are known only up to logarithmic factors, for details check Kim and Vu 2004, Divide and

conquer martingales and the number of triangles in a random graph, or Janson, Oleszkiewicz, and Rucinski
2004, Upper tails for subgraph counts in random graphs.
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be the normalizing constant for this Gibbs measure. For any function f of the spins σ and
the disorder g, the quenched law (or distribution) of f(g, σ) is the conditional distribution
of f given g. The annealed law is the unconditional expectation of f . Usually, the quenched
expectation of a function f(g, σ) is denoted by 〈f〉:

〈f〉 = (ZN (β, h, g))−1
∑

σ∈{−1,1}N
f(g, σ) exp

 β√
N

∑
i<j

gijσiσj + h
N∑
i=1

σi

 .

Then the annealed expectation is just E〈f〉, which will often be shortened to ν(f).

Suppose we generate two independent configurations σ1, σ2 ∈ {−1, 1}N from the same Gibbs
measure. That is, sample g, and then take two (conditionally) independent samples σ1, σ2

from the distribution of spins given g. The overlap between σ1 and σ2 is defined to be

R1,2 =
1

N

N∑
i=1

σ1i σ
2
i .

Let pN (β, h) = N−1E(logZN (β, h)).

Theorem 55 Replica-symmetric solution of the S-K model.

There is β0 > 0 such that ∀β ∈ (0, β0), ∀h

lim
N→∞

pN (β, h) = log(2) + E log cosh(βz
√
q + h)) +

β2(1− q)2

4

where z ∼ N(0, 1) and q = q(β, h) is the unique solution of q = E[tanh2(βz
√
q + h)].

logZN
N

− pN (β, h)
P→ 0

(Note that this is not equal to limN→∞ log(E(ZN )
N ).)

27 History Lesson

Sherrington and Kirkpatrick claimed that the statement above was true for all β, h, however
it soon became clear that this is false. Talagrand proved the theorem above in 1998 (see
also Shcherbina 1997). Parisi conjectured a “broken replica symmetry solution” - this was
recently proven to be correct. If h = 0, the model is more tractable. In that case,

lim
N→∞

pN (β, h) =
β2

4
+ log(2) (0 ≤ β < 1)
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and there is a phase transition at β = 1. This was derived by Aizenmann, Lebowitz and
Ruelle in 1987. One outstanding and important conjecture is that the replica symmetric
solution holds for all (β, h) satisfying

β4E

[
1

cosh4(βz
√
q + h)

]
< 1

where q and z are as before. The boundary of this region is known as the Almeida-Thouless
line (AT line). Talagrand showed that the replica-symmetric solution is invalid beyond the
AT line.

21-75



STAT C206A / MATH C223A : Stein’s method and applications 1

Lecture 22

Lecture date: Oct 17, 2007 Scribe: Maximilian Kasy

Repetition of the setup for the Sherrington Kirkpatrick model:
A so called disorder (gi,j)i≤j≤N is drawn from an i.i.d. N(0, 1) distribution, conditional on
g, σ = (σ1, . . . , σN ) has density proportional to

exp

(
β√
N

∑
gijσiσj + h

∑
σi

)

Definition 56 (Overlap) Pick σ1, σ2 independently from the Gibbs-measure (i.e. the con-
ditional distribution of σ given g). The overlap is defined as the random variable

R12 =
1

N

∑
i

σ1i σ
2
i

Proposition 57 ∃β0 > 0: if β < β0 then “with high probability” R12 ' q where q = q(β, h)
solves

q = E[tanh2(βz
√
q + h)]

where z ∼ N(0, 1). More precisely:

E
〈

(R12 − q)2k
〉

=
C(k)

Nk
∀ k,N

(Recall: 〈·〉 denotes conditional expectation given g)

Corollary 58 Let

RS(β, h) := log 2 + E[log cosh(βz
√

(q) + h)] +
β2(1− q)2

4

where q is defined as above. Then, for β ≤ β0,

logZN
N

→ RS(β, h)

in probability as N →∞, where ZN (β, h, g) denotes the normalizing constant of the Gibbs
measure.

The proof of this Corollary proceeds in two steps:
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1. Show that
logZN
N

− E
[

logZN
N

]
→ 0

in probability. This is the easier part.

2. Show that

E

[
logZN
N

]
→ RS(β, h)

This latter step is in turn subdivided into two parts: Showing that the lim sup of the
left hand side is bounded by the right hand side (which is somewhat easier, and holds
for all β, h), and showing inversely that the lim inf is bigger than the right hand side,
which only is true for a certain range of β, h.

28 The Gaussian Poincare inequality

1. In 1 dimension: If Z ∼ N(0, 1) then for all continuous f we have V arf(Z) ≤ E[f ′(Z)2]

2. If Z1, . . . , Zn i.i.d. N(0, 1), then V arf(Z1, . . . , Zn) ≤
∑
E[
(
∂f
∂zi

)2
]

Proof:
1→ 2: If X,Y iid then V arf(x) = 1

2E[(f(x)− f(y))2]. By Efron-Stein

V arf(Z1, . . . , Zn) ≤

1

2

∑
E[(f(Z1, . . . , Zn)− f(Z1, . . . , Zi−1, Z

′
i, Zi+1, . . . , Zn))2] =

∑
E[V arf(Z1, . . . , Zn|1, . . . , Zi−1, Zi+1, . . . , Zn)] ≤

∑
E[

(
∂f

∂zi

)2

]

where the last inequality follows from 1.
1, by Stein’s method: Given an absolutely continuous f find g such that g′(x) − xg(x) =
f(x)− Ef(Z). W.l.o.g. we assume Ef(Z) = 0. Then

V arf(Z) = Ef(Z)2 = E((g′(Z)− Zg(Z))f(Z)) = −Eg(Z)f ′(Z)

(The last equality follows from integration by parts). This implies by Cauchy Schwartz

Ef(Z)2 ≤
√
Ef ′(Z)2Eg(Z)2

Now f ′(x) = ∂
∂x(g′ − xg) = g′′ − xg′ − g Hence

Ef(Z)2 = −E(g(Z)(g′′(Z)− Zg′(Z)− g(Z))) = E(g′(Z)2 + g(Z)2)
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Thus Eg(Z)2 ≤ Ef(Z)2. Combining we get the result. This generalizes: If v : R → R is
strictly convex and X is a R.V. with density proportional to exp(−v(x)), then

V arf(X) ≤ E
(
f ′(X)2

v′′(X)

)
Proof: find a g such that g′ + v′

v g = f − Ef .
Exercise: More generally, If v : Rn → R is strictly convex and X is a R.V. with density
proportional to exp(−v(x)), then for all absolutely continuous f : Rn → R:

V arf(X) ≤ E
[
(∇f(X))t(Hess V (X))−1∇f(X)

]
A deep generalization of this is the so called Helffer-Sjöstrand machinery.

Now, logZN
N is a function of g, hence

V ar

(
logZN
N

)
≤
∑
i<j

E

(
∂

∂gij

logZN
N

)2

Now,
∂

∂gij

logZN
N

=
1

NZN

∂ZN
∂gij

=

1

NZN

∑
σ

β√
N
σiσj exp

(
β√
N

∑
gijσiσj + h

∑
σi

)
=

β

N3/2
〈σiσj〉 .

Hence ∑
i<j

E

(
∂

∂gij

logZN
N

)2

=
1

N3
E
∑
i<j

〈σiσj〉2 ≤
1

2N
.

It follows that

V ar

(
logZN
N

)
≤ 1

2N

This also shows

V ar

(
logZN
N

)
≤ β2

2N3
E
∑
i<j

〈σiσj〉2)

=
β2

2N3
E

〈∑
i<j

σ1i σ
1
jσ

2
i σ

2
j

〉

=
β2

2N
E
〈
R2

12

〉
where σ1, σ2 are i.i.d. draws from the Gibbs measure. We will show later that when β < 1
and h = 0, the above bound is of order N−2.
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Recall that, in the Sherrington Kirkpatrick model, the probability of a configuration σ =
(σi)

N
i=1 ∈ {−1,+1}N is

P(σ) = Z−1N exp

(
β√
N

∑
i<j

gijσiσj + h

N∑
i=1

σi

)

where (gij)1≤i<j≤N are i.i.d. standard gaussian random variables and

ZN =
∑

σ∈{−1,+1}N
exp

(
β√
N

∑
i<j

gijσiσj + h
N∑
i=1

σi

)

is the normalizing constant. Suppose σ1,σ2 are i.i.d. configurations from this Gibbs mea-
sure given g = (gij)i<j . The overlap between σ1,σ2 is defined as

R12 =
1

N

N∑
i=1

σ1i σ
2
i .

Suppose 〈·〉 denotes conditional expectation w.r.t. the Gibbs measure given g and ν denotes
unconditional expectation, i.e. ν(f) = E〈f〉. Then we have the following result.

Theorem 59 ∃ β0 > 0 such that for all β ∈ [0, β0] and for all h

logZN
N

→ log 2 + E log cosh(βz
√
q + h) +

β2(1− q)2

4

where q satisfies q = E tanh2(βz
√
q + h) and z ∼ N(0, 1).

Idea of the proof : Choose any arbitary number q ∈ [0, 1]. Consider the alternative Gibbs
measure ∝ exp(

∑N
i=1(βzi

√
q+ h)σi) where z1, z2, . . . , zN are i.i.d. N(0, 1) random variables

independent of g. Let ν0 be the unconditional law of this Gibbs measure. Note that σi’s are
independent under this Gibbs measure (both conditionally and unconditionally) and this
measure is easier to handle. Also

β√
N

∑
1≤i<j≤N

gijσiσj + h

N∑
i=1

σi =

N∑
i=1

(
β

2
li + h

)
σi
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where li = 1√
N

∑N
j=1,j 6=i gijσj . The main idea is to show that for β sufficiently small, with a

proper choice of q one can compare ν0 and ν “in some sense”. In the last lecture we proved
that N−1(logZN −E logZN )→ 0 in probability. Today we’ll prove that

E

(
logZN
N

)
≤ log 2 + E log cosh(βz

√
q + h) +

β2(1− q)2

4
for all q ∈ [0, 1], β ≥ 0, h ∈ R.

Lemma 60 (Gaussian Interpolation) Suppose X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn) are two centered gaussian random vectors independent of each other. Let
F : Rn → R be a C2 function and let

ϕ(t) = EF (
√
tX +

√
1− tY ).

Then we have

ϕ′(t) =
1

2

n∑
i,j=1

(E(XiXj)−E(YiYj)) ·E
(

∂2F

∂xi∂yj
(
√
tX +

√
1− tY )

)
.

In particular we have

EF (X)−EF (Y ) =

∫ 1

0
ϕ′(t)dt.

Proof: Exercise. 2

For each σ ∈ {−1,+1}N , let

uσ =
β√
N

∑
i<j

gijσiσj and vσ = β
√
q

N∑
i=1

ziσi.

Then the normalizing constants in the S-K model and in the alternative model are

ZN =
∑
σ

exp(uσ + h
∑

σi) and Z0
N =

∑
σ

exp(vσ + h
∑

σi)

respectively. So if we define a function Z : R{−1,+1}N → R as

Z(x) =
∑

σ∈{−1,+1}N
wσ exp(xσ)

where x = (xσ)σ∈{−1,+1}N and wσ = exp(h
∑N

i=1 σi), we have ZN = Z(u), Z0
N = Z(v)

where u = {uσ}σ∈{−1,+1}N and v = {vσ}σ∈{−1,+1}N . Let

F (x) =
logZ(x)

N
for x ∈ R{−1,+1}N
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and ϕ(t) = EF (
√
tu+

√
1− tv). We are interested in

ϕ(1)− ϕ(0) =

∫ 1

0
ϕ′(t)dt.

Clearly we have

∂F

∂xσ
=

∂

∂xσ

(
logZ(x)

N

)
=

1

NZ(x)
wσ exp(xσ)

and
∂2F

∂xτ∂xσ
= − 1

N(Z(x))2
wτwσ exp(xσ + xτ ) +

1

NZ(x)
wσ exp(xσ) · 1{σ=τ}.

Let U(σ1,σ2) = 1
2E(uσ1uσ2 − vσ1vσ2). Then

ϕ′(t) =
∑
σ1,σ2

U(σ1,σ2)E

(
∂2F

∂xσ1∂xσ2

(
√
tu+

√
1− tv)

)

=
1

N

∑
σ

U(σ,σ)
wσ exp(

√
tuσ +

√
1− tvσ)

Zt

− 1

N

∑
σ1,σ2

U(σ1,σ2)
wσ1wσ2 exp(

√
t(uσ1 + uσ2) +

√
1− t(vσ1 + vσ2))

Z2
t

where Zt =
∑

σ wσ exp(
√
tuσ +

√
1− tvσ). For each t ∈ [0, 1] we have a gibbs measure

∝ exp(
√
tuσ +

√
1− tvσ + h

∑
σi) where uσ = β√

N

∑
i<j gijσiσj and vσ = β

√
q
∑N

i=1 ziσi.

Let 〈·〉t denote the expectation w.r.t. this gibbs measure. Let νt denote the unconditional
expectation. Then

ϕ′(t) =
1

N
(E〈U(σ,σ)〉t −E〈U(σ1,σ2)〉t).

Now

U(σ1,σ2) =
β2

2N
E

(
(
∑
i<j

gijσ
1
i σ

1
j )(
∑
i<j

gijσ
2
i σ

2
j )

)
− β2q

2
E

(
(
N∑
i=1

Ziσ
1
i )(

N∑
i=1

Ziσ
2
i )

)

=
β2

2N

∑
i<j

σ1i σ
2
i σ

1
jσ

2
j −

β2q

2

N∑
i=1

σ1i σ
2
i

=
β2

4N

(
(
N∑
i=1

σ1i σ
2
i )

2 −N
)
− β2q

2

N∑
i=1

σ1i σ
2
i

=
β2N

4

(
R2

12 −
1

N

)
− β2qN

2
R12

=⇒ 1

N
U(σ1,σ2) =

β2

4

(
R2

12 −
1

N

)
− β2q

2
R12.
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Note that
1

N
U(σ,σ) =

β2

4

(
1− 1

N

)
− β2q

2
.

Now plugging in the values of U(σ,σ), U(σ1,σ2) we have

ϕ′(t) =

(
β2

4
− β2q

2

)
−
(
β2

4
E〈R2

12〉t +
β2q

2
E〈R12〉t

)
= −β

2

4
E〈(R12 − q)2〉t +

β2

4
(1− q)2.

This gives, in particular,

ϕ(1) ≤ ϕ(0) +
β2(1− q)2

4
∀ 0 ≤ q ≤ 1.

Now note that

ϕ(0) =
1

N
E log

( ∑
σ∈{−1,+1}N

N∏
i=1

exp((βzi
√
q + h)σi)

)

=
1

N
E log

N∏
i=1

(exp(βzi
√
q + h) + exp(−βzi

√
q − h))

=
1

N

N∑
i=1

E log (2 cosh(βzi
√
q + h)) = log 2 + E log cosh(βz

√
q + h)

where z ∼ N(0, 1). So for any 0 ≤ q ≤ 1, we have

E

(
logZN
N

)
≤ log 2 + E log cosh(βZ

√
q + h) +

β2(1− q)2

4
.

This inequality is called Guerra’s inequality and this holds for all β ≥ 0, h ∈ R.

Exercise 61 Prove that the R.H.S. of Guerra’s inequality is minimized when

q = E tanh2(βz
√
q + h).

23-82



STAT C206A / MATH C223A : Stein’s method and applications 1

Lecture 24

Lecture date: October 22, 2007 Scribe: Joel Mefford

Continuing with the Sherrington-Kirkpatrick model.
∀q ∈ [0, 1], ∀β ≥ 0,∀h ∈ R

E

(
1

N
logZN

)
≤ inf

q

{
log 2 + E log cosh (βz

√
q + h) +

β2(1− q)2

4

}
, (70)

where z ∼ N(0, 1).

Exercise 62 (From the previous lecture) Show that the right hand side of Equation 1 is
minimized when

q = E tanh2 (βz
√
q + h) .

Now,

ϕ′(t) = −β
2

4
E
〈
(R12 − q)2

〉
t
+
β2

4
(1− q)2,

where R12 = 1
N

∑N
1 σ1i σ

2
i . This implies that, ∀0 ≤ q ≤ 1,

1

N
E logZN = ϕ(1) ≤ ϕ(0) +

β2(1− q)2

4
,

and
ϕ(0) = log 2 + E log cosh (βz

√
q + h) ,

where z ∼ N(0, 1).

Thus,
1

N
E logZN ≤ inf

q

{
log 2 + E log cosh (βz

√
q + h) +

β2(1− q)2

4

}
. (71)

From exercise 1, the right hand side of this equation is minimized when q =
E tanh2

(
βz
√
q + h

)
.

Exercise 63 Show that if h > 0, equation (2) has exactly one root.

From the formula for ϕ′(t), we see that approximate equality for eqation 2 holds if and only
if q is such that E

〈
(R12 − q)2

〉
t
≈ 0 for 0 ≤ t ≤ 1.
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Conversely, if E
〈
(R12 − q)2

〉
t
≈ 0,∀0 ≤ t ≤ 1 holds, then we must have approximate

equality in Equation 2. Therefore, q must satisfy q = E tanh2
(
βz
√
q + h

)
.

Let us take q = q(β, h) such that q = E tanh2
(
βz
√
q + h

)
.

First, we observe that at t = 0, the coordinates are independent under 〈·〉0.

〈σi〉0 = 1 ·P(σi = 1) + (−1) ·P(σi = −1)

= tanh
(
βzi
√

2 + h
)

〈
σ1i σ

2
i

〉
0

=
〈
σ1i
〉
0

〈
σ2i
〉
0

= 〈σi〉20
= tanh2 (βzi

√
q + h)

Here, σ1 and σ2 are i.i.d. from the Gibbs measure, and

R12 =
1

N

N∑
i=1

σ1i σ
2
i ≈ 〈R12〉0 =

1

N

N∑
i=1

tanh2 (βzi
√
q + h) .

Since z1, z2, . . . , zN
i.i.d∼ N(0, 1),

1

N

N∑
i=1

tanh2 (βzi
√
q + h) ≈ E tanh2 (βzi

√
q + h) = q.

Thus, under 〈·〉0, we have R12 ≈ q with high probability.

In fact, for λ < 1
2 ,

ν0
(
exp

(
λN(R12 − q)2

))
≤ 1√

1− 2λ
. (72)

Exercise 64 Derive equation (3).

Latala’s Proof of the concentration of the overlap

Theorem 65 If β < 1
2 , for 2s < 1− 4β2, ν = ν1

ν exp
(
sN(R12 − q)2

)
≤ 1√

1− 2s− 4β2
.

Thus,

ν (R12 − q)2k ≤
(Ck)k

Nk
.

Proof: Take any function f = f(σ1, σ2) of a pair of spin configurations.
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Claim

d

dt
νt(f) ≡ ν ′t(f)

=
Nβ2

2

[
νt
(
(R12 − q)2f

)
− 2νt

(
(R34 − q)2f

)
− 2ν

(
(R23 − q)2f

)
+ 3νt

(
(R34 − q)2f

)]
If f ≥ 0 everywhere,

d

dt
νt(f) ≤ Nβ2

2

[
νt
(
(R12 − q)2f

)
+ 3νt

(
(R34 − q)2

)]
.

Taking f = (R12 − q)2k,

ν ′t(R12 − q)2k ≤ Nβ2

2

[
νt (R12 − q)2k+2 + 3νt

(
(R34 − q)2(R12 − q)2k

)]
.

Now,

νt

(
(R34 − q)2(R12 − q)2k

)
≤

(
νt (R34 − q)2k+2

) k
k+1
(
νt (R12 − q)2k+2

) 1
k+1

= νt (R12 − q)2k+2 .

Combining, we get

ν ′t (R12 − q)2k ≤ 2Nβ2νt (R12 − q)2k+2 .

Multiplying both sides by λkNk

k! and summing over k, we have

ν ′t
(
exp

(
λN(R12 − q)2

))
≤ 2Nβ2νt

(
(R12 − q)2eλN(R12−q)2

)
.

It follows that
d

dt
νt exp

((
λ− 2tβ2

)
N(R12 − q)2

)
≤ 0.

In partiicular,

ν1
(
exp

{(
λ− 2β2

)
N (R12 − q)

})
≤ ν0

(
eλN(R12−q)2

)
.

So, for λ = s+ 2β2 < 1
2 , we get our results: For β < 1

2 , for 2s < 1− 4β2,

ν exp
(
sN(R12 − q)2

)
≤ 1√

1− 2s− 4β2
.

2
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Latala’s Result: If β < 1/2 then for 2s < 1− 4β2

ν(exp(sN(R1,2 − q)2)) ≤
1√

1− 2s− 4β2
⇒ ν((R1,2 − q)2k) ≤

(Ck)k

Nk
for all k

so the overlap is concentrated.

Exercise 1: Using this result show that for any fixed p,

E(〈σ1σ2 · · ·σp〉 − 〈σ1〉〈σ2〉 · · · 〈σp〉)2 ≤ K(p)ν((R1,2 − q)2) ≤
K(p)

N

Exercise 2: The above expectation goes to 0 even if p grows with N . How fast can it grow?

The 1st exercise means that any collection of spins at p locations are approximately
independent.

Hints for Exercise 1: use induction on p and note if σ1, . . . , σ4 are 4 configurations

then R1,3 −R1,4 −R2,3 +R3,4 = (σ1−σ2)·(σ3−σ4)
N .

Exercise 3: (A Talagrand research problem) Show the total variation distribution
distance between the joint law of σ1, . . . σp and the product of marginals → 0 as N →∞.

d
dt E logZt

N = −β2

4 νt((R1,2 − q)2) + β2

4 (1 − q)2. Since νt((R1,2 − q)2) = O( 1
N ) ∀ 0 ≤ t ≤ 1

thus,

E
logZN
N

= ϕ(1) = ϕ(0) +
β2(1− q)2)

4
+O(

1

N
) = log 2 + E(log cosh(βZ

√
q + h))

Thouless - Anderson - Palmer Equations: The random quantities 〈σ1〉, 〈σ2〉, . . . 〈σN 〉
satisfy an approximate system of equations

〈σi〉 ≈ tanh(
β√
N

N∑
j=1,j 6=i

gij〈σj〉+ h− β2(1− q)〈σi〉) i = 1, 2, . . . , N

Talagrand in 2003 gave the first rigorous proof.
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Suppose β < 1/2, h = 0. Then q = 0, and so E〈R1,2〉 ≤ c
N . Let li = 1√

N

∑N
j=1,j 6=i gijσj be

the “local field” at site i. We will look at the annealed (i.e. unconditional) distribution of l1.

Take any smooth function f : R→ R

ν(l1f(l1)) =
1√
N

N∑
j=2

E[g1j〈σjf(l1)〉] =
1√
N

N∑
j=2

E[
∂

∂g1j
〈σjf(l1)〉]

∂

∂g1j
〈σjf(l1)〉 =

∂

∂g1j

∑
σ σjf(l1(σ)) exp( β√

N

∑
r<s grsσrσs)∑

r exp( β√
N

∑
r<s grsσrσs)

=

∑
σ

[
σjf

′(l1(σ))
σj√
N

exp(· · · ) + σjf(l1(σ)) β√
N
σ1σj exp(· · · )

]
∑

σ exp(· · · )

−
∑

σ f(l1(σ)) exp(· · · )
(
∑

exp(· · · ))2

(∑
r

β√
N
σ1σj exp(· · · )

)

=
〈f ′(l1)〉√

N
+

β√
N
〈σ1f(l1)〉 −

β√
N
〈σjf(l1)〉〈σ1σj〉

Thus

ν(l1f(l1)) =
N − 1

N
ν(f ′(l1))−

β(N − 1)

N
ν(σ1f(l1))−

β

N

∑
j=2

N E〈σjf(l1)〉〈σ1σj〉

and
〈σjf(l1)〉〈σ1σj〉 = 〈f(l1(σ

1))σ1jσ
2
jσ

2
1〉.

So

1

N

N∑
j=2

〈σjf(l1)〉〈σ1σj〉 = 〈f(l1(σ
1))σ21R1,2〉+O(

1

N
).

Exercise 4: Under 〈 〉, what is the conditional expectation of σ1 given σ2, . . . σN?

l1 is a function of σ2, . . . σN , so 〈σ1f(l1)〉 = 〈tanh(βl1)f(l1)〉. Combining the steps
we get,

ν
(
f ′(l1)− (l1 − β tanh (βl1)) f(l1)

)
= O(

1√
N

)

For any suitable probability density ρ, if X ∼ ρ then for any suitable f we have E(f ′(X) +
ρ′(X)
ρ(X) f(X)) = 0 (integration by parts), and the converse is also true. Thus, the annealed
distribution of l1 must be close to the distribution with density ρ that satisfies

d

dx
log ρ(x) = −(x− β tanhβx).
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This implies

log ρ(x) = const − x2

2
+ log cosh(βx)

⇒ ρ(x) = Const cosh(βx)e−x
2/2 = Const (e−(x−β)

2/2 + e−(x+β)
2/2).

Thus, as N →∞, the annealed distribution of l1 tends to the symmetric mixture of N(β, 1)
and N(−β, 1).
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29 Annealed CLT for the Hamiltonian of the Sherrington-
Kirkpatrick model

We begin by recalling the setting of the previous lecture: let β < 1/2, h = 0, and

li =
1√
N

N∑
j=1
j 6=i

gijσj .

We saw that the annealed distribution of l1 approaches

1

2
N(β, 1) +

1

2
N(−β, 1)

as N → ∞. (In fact this can be extended to the regime β < 1, h = 0; we’ll return to this
later.) We also saw that for any smooth function f ,

ν
(
f ′(l1)− (l1 − β tanh(βl1)) f(l1)

)
→ 0

(here ν is the annealed distribution).

Exercise 66 Develop Stein’s method for

1

2
N(β, 1) +

1

2
N(−β, 1)

and get a total variation bound for the above CLT.

The next exercise should have been given earlier, but is an important result.

Exercise 67 Recall Lemma 3.4 from the proof of the KMT embedding: if W is a random
variable such that EW = 0 and E

[
W 2
]
<∞, and T is a random variable such that

E[Wϕ(W )] = E
[
Tϕ′(W )

]
for all ϕ Lipschitz, (73)
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then for all σ2 > 0, there exists a pair of random variables (W ′, Z) on the same probability
space such that W ′ is a version of W , Z ∼ N

(
0, σ2

)
and

E
[
exp(θ

∣∣W ′ − Z∣∣)] ≤ 2E

[
exp

(
2θ2

(
T − σ2

)2
σ2

)]
.

Prove a multivariate version of this result.

((73) can be alternately written as E[Wϕ′(W )] = E[Tϕ′′(W )] for all ϕ. This generalizes
to E[W · ∇ϕ(W )] = E[Tr(T Hess(ϕ(W )))], where W = (W1, . . . ,Wd), ϕ : Rd → R, and
T = (Tij)i,j≤d is a positive definite random matrix. Replace σ2 by the positive definite
matrix Σ = (σij)

d
i,j=1 and replace θ by θ ∈ Rd.)

In the regime β < 1/2, h = 0, we’ll compute the limiting annealed distribution of the
Hamiltonian ∑

i<j

gijσiσj .

Specifically, we will consider

H =
1

N

∑
i<j

gijσiσj −
√
Nβ

2
.

The appropriate scaling and centering come from the following (“very simple”) exercise.

Exercise 68 Let

pN (β) = E

[
logZN (β)

N

]
.

We saw that pN (β)→ log 2 + β2/4. Show

p′N (β) = E

〈
1

N3/2

∑
i<j

gijσiσj

〉

p′′N (β) = EVar

 1

N

∑
i<j

gijσiσj

∣∣∣∣∣∣ g
 .

Take any smooth f : we have

ν(Hf(H)) = E

〈
1

N

∑
i<j

gijσiσjf(H)

〉
−
√
Nβ

2
E〈f(H)〉

=
1

N

∑
1≤i<j≤N

E[gij 〈σiσjf(H)〉]−
√
Nβ

2
E〈f(H)〉. (74)
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We use integration by parts to deal with the first term in (74):

1

N

∑
1≤i<j≤N

E[gij〈σiσjf(H)〉]

=
1

N

∑
i<j

E

[
∂

∂gij
〈σiσjf(H)〉

]
=

1

N2

∑
i<j

E
〈
f ′(H)

〉
− β

N3/2

∑
i<j

E[〈f(H)σiσj〉〈σiσj〉] +
β

N3/2

∑
i<j

E〈f(H)〉. (75)

The first term in (75) equals

N(N − 1)

2N2
ν
(
f ′(H)

)
≈ 1

2
ν
(
f ′(H)

)
and similarly the third is approximately

√
Nβ

2
ν(f(H)),

which takes care of the second term in (74). The second term of (75) is approximately

β

2N3/2
E

 N∑
i,j=1

〈f(H)σiσj〉〈σiσj〉

 .
We can write the summand as

〈
f
(
H
(
g, σ1

))
σ1i σ

1
jσ

2
i σ

2
j

〉
, where σ1 and σ2 are two spin

configurations independently drawn from the quenched distribution 〈·〉. Doing this, the
above gives

β
√
N

2
E

〈
f
(
H
(
g, σ1

)) 1

N2

N∑
i,j=1

σ1i σ
1
jσ

2
i σ

2
j

〉

=
β
√
N

2
E
〈
f
(
H
(
g, σ1

))
R2

12

〉
.

If f is bounded, then ∣∣E 〈f(H)R2
12

〉∣∣ ≤ |f |∞E
〈
R2

12

〉
≤ C|f |∞

N
.

Putting these above calculations back into (74), we get

ν(Hf(H)) =
1

2
ν
(
f ′(H)

)
+O

(
1√
N

)
,

which shows that H =⇒ N(0, 1/2).

Exercise 69 Prove an annealed CLT for
∑

i<j gijσiσj when β < 1/2, h 6= 0.
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30 Quenched laws

Example 70 For the Hamiltonian, we showed that for any f ,

ν

(
1

2
f ′(H)−Hf(H)

)
= E

〈
1

2
f ′(H)−Hf(H)

〉
→ 0.

For a quenched CLT, we have to show that for all f ,〈
1

2
f ′(H)−Hf(H)

〉
p→ 0.

Exercise 71 Suppose that for “all” f ,〈
1

2
f ′(H)−Hf(H)

〉
p→ 0.

Show that “for all” ϕ, 〈ϕ(H)〉 p→ E[ϕ(Z)], where Z ∼ N(0, 1/2).

Exercise 72 Suppose Exercise 71 holds. Let µN denote the (random) distribution of H
under the Gibbs measure (that is, the “quenched” or conditional distribution given g). Show

that µN
p→ N(0, 1/2) on the space of probability measures.
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In the previous lectures, for the SK model with h = 0, β < 1/2 ( though the result actually
holds for h = 0, β < 1), we proved that the annealed law of l1 converges to the mixture of
Gaussian 1/2N(β, 1) + 1/2N(−β, 1) by showing,

ν
(
f ′(l1)− (l1 − β tanh(βl1))f(l1)

) N→∞→ 0 for every smooth f.

We may go even further and can actually show by Stein’s method that

TV (L(l1),L(1/2N(β, 1) + 1/2N(−β, 1)) ≤ c/
√
N

where TV stands for the total variation distance. Now, let ν(·|g) denote the quenched
distribution of l1, i.e. the conditional distribution of l1 given g = (gij). We want to show

ν(·|g)→ 1/2N(β, 1) + 1/2N(−β, 1) in probability.

In other words, the random measure ν(·|g) converges in probability to nonrandom proba-
bility measure 1/2N(β, 1) + 1/2N(−β, 1) in the space of all probability measures (equipped
with metric for convergence in distribution).

It suffices to show for all bounded measurable h,

〈h(l1)〉
P→ Eh(Z) where Z ∼ 1/2N(β, 1) + 1/2N(−β, 1).

By standard Stein method arguments, it is enough to prove

〈f ′(l1)− (l1 − β tanh(βl1))f(l1)〉
P→ 0, (76)

for all nice f ’s which come as a bounded solution of the differential equations f ′(x)− (x−
tanh(βx))f(x) = h(x)− Eh(Z) for bounded h.

We pause for a moment to remark that showing (76) is a rather delicate problem as many
of the standard tools, e.g. Poincaré inequality, fail in this case.

Before going to the proof, let us have a quick recap of what we did in the annealed case.

We started with

〈l1f(l1)〉 = N−1/2
N∑
j=2

g1j〈σjf(l1)〉 =
N∑
j=2

g1jhj where hj := N−1/2〈σjf(l1)〉.
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Using integration by parts, we had that

E

N∑
j=2

g1jhj = E

N∑
j=2

∂hj
∂g1j

. (77)

It turned out, using 〈R2
12〉 ≈ 0, that

N∑
j=2

∂hj
∂g1j

≈ 〈f ′(l1) + β tanh(βl1)f(l1)〉.

For the quenched CLT, we would like to show that (77) holds approximately even without
the expectation, i.e.

N∑
j=2

g1jhj ≈
N∑
j=2

∂hj
∂g1j

with high probability.

So, we will need the following approximation lemma.

Lemma 73 ( approximation lemma) Suppose g1, g2, . . . , gm are i.i.d. N(0, 1) and
h1, h2, . . . , hm are functions of g = (g1, g2, . . . , gm). Then

E

 m∑
j=1

gjhj −
m∑
j=1

∂hj
∂gj

2

=
m∑
j=1

Eh2j +
m∑
j=1

m∑
k=1

E
∂hj
∂gk

∂hk
∂gj

. (78)

Proof. Let u =
∑m

j=1 gjhj −
∑m

j=1
∂hj
∂gj

. Then ∂u
∂gj

= hj +
∑m

k=1 gk
∂hk
∂gj
−
∑m

k=1
∂2hk
∂gj∂gk

.

L.H.S. = Eu2 = Eu

 m∑
j=1

gjhj −
m∑
j=1

∂hj
∂gj


=

m∑
j=1

Eugjhj −
m∑
j=1

Eu
∂hj
∂gj

=
m∑
j=1

Eu
∂hj
∂gj

+
m∑
j=1

Ehj
∂u

∂gj
−

m∑
j=1

Eu
∂hj
∂gj

by integration by parts

=

m∑
j=1

Ehj
∂u

∂gj

=

m∑
j=1

Eh2j +

m∑
j=1

m∑
k=1

Ehjgk
∂hk
∂gj
−

m∑
j=1

m∑
k=1

Ehj
∂2hk
∂gj∂gk

=
m∑
j=1

Eh2j +
m∑
j=1

m∑
k=1

E
∂hj
∂gk

∂hk
∂gj

.
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where the last step follows from integration by parts on the second term. �

Estimation of R.H.S. of (78):

N∑
j=2

Eh2j = N−1E
N∑
j=2

〈σjf(l1)〉2

= N−1E

N∑
j=2

〈f(l1(σ
1)f(l1(σ

2)σ1jσ
2
j 〉 where σ1, σ2

ind∼ Gibbs measure given g

= E〈f(l1(σ
1)f(l1(σ

2)R12〉+O(
1

N
)

= O(
1√
N

) in the high temperature phase.

Lemma 74 In SK model (any h), for any function v = v(g, σ) of g, σ,

∂

∂gij
〈v〉 = 〈 ∂v

∂gij
〉+

β√
N
〈vσiσj〉 −

β√
N
〈v〉〈σiσj〉.

Proof. Exercise. �

Using lemma 74, we have

∂hk
∂g1j

=
1

N
〈f ′(l1)σkσj〉+

β

N
〈f(l1)σ1σkσj〉 −

β

N
〈f(l1)σk〉〈σ1σj〉.

Thus,
∂hk
∂g1j

=
1

N
〈σjvk〉 =

1

N
〈σkwj〉,

where vk = vk(g, σ) := f ′(l1)σk+βf(l1)σ1σk−β〈f(l1)σk〉σ1 and wj = wj(g, σ) := f ′(l1)σj+
βf(l1)σ1σj − βf(l1)〈σ1σj〉.

N∑
j=2

N∑
k=2

E
∂hj
∂g1k

∂hk
∂g1j

=
1

N2

N∑
j=2

N∑
k=2

E〈vj(g, σ1)wj(g, σ2)σ1kσ2k〉

=
1

N

N∑
j=2

E〈vj(g, σ1)wj(g, σ2)R12〉+O(
1

N
)

= O(
1√
N

) since vj , wj bounded, E|〈R12〉| = O(
1√
N

) for β < 1/2, h = 0.

This completes the proof.

Exercise 75 Prove the quenched CLT for the hamiltonian in β < 1/2, h = 0.
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31 A recap

For β < 1/2 in the Sherrington-Kirkpatric (S-K) model, we showed a bound on the overlap
R12:

E
〈

(R12 − q)2k
〉
≤ (Ck)k

Nk
, (79)

where q = E[tanh2(βZ
√
q + h)] and Z ∼ N (0, 1). This means that the overlap is concen-

trated. When h = 0 this implies that

E
〈
R2k

12

〉
≤ (Ck)k

Nk
, (80)

so R12 is close to 0 in this case. This result was crucial in showing that for h = 0 the
quantity

l1 =
1√
N

N∑
j=2

g1jσj (81)

has a limiting annealed distribution

1

2
N (β, 1) +

1

2
N (−β, 1) . (82)

We also proved that the quenched distribution of l1 converges in probability to (82) by
showing that 〈

f ′(l1)− (l1 − β tanh(βl1))f(l1)
〉 P−→ 0 . (83)

Note that this convergence is in probability on the space of probability measures.

Finally, we also found a CLT for the Hamiltonian
∑
gijσiσj when h = 0. When h 6= 0 the

limiting distribution of the Hamiltonian is not known.
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32 The TAP equations

Today we will start looking at the Thouless-Anderson-Palmer (TAP) equations, which are
a collection of self-consistent equations for the quenched average value for i = 1, 2, . . . , N :

〈σi〉 ≈ tanh

 β√
N

N∑
j=1,j 6=i

gij〈σj〉+ h− β2(1− q)〈σi〉

 (84)

Furthermore, it is true that

〈σi〉
d−→ tanh(βz

√
q + h) (85)

where z ∼ N (0, 1). Moreover, 〈σ1〉, 〈σ2〉, . . . , 〈σp〉 are asymptotically independent for fixed
p as N →∞.

The concentration of the overlaps implies that

〈σ1σj〉 ∼= 〈σi〉〈σj〉 , (86)

which in turn implies

1

N

N∑
i=1

σi ∼=

〈
1

N

N∑
i=1

σi

〉
(87)

=
1

N
〈σi〉 (88)

P−→ E[tanh(βz
√
q + h)] . (89)

Similarly, since R12 → q,

R12
∼= 〈R12〉 (90)

=
1

N

N∑
i=1

〈σi〉2 (91)

P−→ E[tanh2(βz
√
q + h)] . (92)

This shows why q must satisfy

q = E[tanh2(βz
√
q + h)] . (93)

For simplicity of notation, let us define

ri =
1√
N

N∑
j=1,j 6=i

gij〈σj〉 − β(1− q)〈σi〉 (94)

so that the TAP equations say

〈σi〉 ∼= tanh(βri + h) . (95)

Note that ri is a function of g only. It can be shown that ri
d−→ N (0, q).
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33 A sketch of the proof

First, note that the conditional expectation of σ1 given σ2, . . . , σN is just tanh(βl1 + h), so

〈σ1〉 = 〈tanh(βl1 + h)〉 . (96)

Now the goal is to approximate the distribution of l1.

We first reparameterize Gaussian mixtures. Given a, b, µ, σ2, let ψa,b,µ,σ2 denote the prob-
ability density on R proportional to

cosh(ax+ b) exp

(
−(x− µ)2

2σ2

)
. (97)

Exercise Show that ψa,b,µ,σ2 is the same as pϕµ1,σ2 + (1 − p)ϕµ2,σ2 , where ϕµ,σ2 is the
density N (µ, σ2), µ1 = µ+ aσ2, µ2 = µ− aσ2, and

p =
exp(aµ+ b)

exp(aµ+ b) + exp(−aµ− b)
. (98)

If X ∼ ψa,b,µ,σ2 , then

E[tanh(aX + b)] = tanh(aE[X] + b− (2p− 1)a2σ2) (99)

= tanh(aµ+ b) . (100)

The term −(2p − 1)a2σ2 is called the Onsager correction term, and is what allows us to
move the expectation inside the tanh. The quenched distribution of l1 is approximately
ψβ,h,r1,1−q, and so

〈tanh(βl1 + h)〉 ∼= tanh(βr1 + h) (101)

and r1 = 〈l1〉 − β(1 − q)〈σ1〉. The quenched distribution is a random distribution with
parameter r1.

The Stein characterizing operator for ψa,b,µ,σ2 is

Tf(x) = f ′(x)−
(
x− µ
σ2

− a tanh(ax+ b)

)
f(x) (102)

To see this, look at

f ′(x) +

(
d

dx
logψa,b,µ,σ2(x)

)
f(x) . (103)

Recall that for the characteristic operator, if X ∼ ψa,b,µ,σ2 then E[Tf(x)] = 0 for all f and
conversely.
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We have to show that

E

〈
f ′(l1)−

(
l1 − r1
1− q

− β tanh(βl1 + h)

)
f(l1)

〉2

−→ 0 . (104)

It is instructive to consider the contrast with the annealed equation. If E〈·〉 → 0 then we’ve
proved nothing. This comes from r1 not being a constant. However, a quenched equation
implies a distributional result because r1 is a constant, given g.

The remaining steps are then

1. Start with

hj(g) =
1√
N
〈(σj − 〈σj〉)f(l1)〉 . (105)

2. Then use the approximation Lemma to show that

N∑
j=2

g1jhj ∼=
N∑
j=2

∂hj
∂g1j

. (106)

3. Recognize, after some computation and using R12
∼= q, that (104) and (106) are the

same.

The full details of these arguments can be found in the paper (S. Chatterjee, Spin Glasses
and Stein’s Method, arXiv:0706.3500v1 [math.PR]).
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When h = 0, a phase transition occurs at β = 1. We saw that in the high temperature
phase, R12 = O(N−1/2). Parisi conjectures that at β = 1 and h = 0, R12 is of order
N−1/3. Guerra proved that at β = 1 and h = 0, E〈R2

12〉 ≤ C/
√
N for some constant C, ie,

R12 = O(N−1/4) at most. Talagrand has another proof in his book, but it is complicated.
Nothing better is known.

Using Stein’s method, we will show that E〈|R12|3〉 ≥ C/N for some C > 0.

Proof: Let ψ(x) be the probability density

cosh(x)e−x
2/2

√
2πe

(i.e. the symmetric mixture of N(1, 1) and N(−1, 1)). Hopefully, this is the distribution of
the local field as N →∞.

For any bounded, measurable f , let Mf =
∫∞
−∞ f(x)ψ(x) dx. Define an operator U as

Uf(x) =
ex

2/2

coshx

∫ ∞
−∞

cosh(t)e−t
2/2(f(t)−Mf) dt

and let Tf(x) = f ′(x)−(x−tanh(x))f(x). Verify that TUf = f−Mf , so U is the inversion
of the Stein operator.

Lemma 76 ||Uf ||∞ ≤ C||f ||∞ and ||(Uf)′||∞ ≤ C||f ||∞ for some universal constant C.

Lemma 77 (Expansion lemma) Fix a bounded, measurable f : R→ R, let b1, . . . , bm be
arbitrary functions of σ. Assume that b1 does not depend on σ1. Then

E(〈f(l1)b1〉〈b2〉 · · · 〈bm〉) =(Mf)E(〈b1〉 · · · 〈bm〉)

−
m∑
r=2

1

N

N∑
j=2

E(〈σjUf(l1)b1〉〈b2〉 · · · 〈brσ1σj〉〈br+1〉 · · · 〈bm〉)

+
m

N

N∑
j=2

E(〈σjUf(l1)b1〉〈b2〉 · · · 〈bm〉) +
1

N
E(〈(Uf)′(l1)b1〉〈b2〉 · · · 〈bm〉)

+
1

N
E(〈σjUf(l1)b1σ1〉〈b2〉 · · · 〈bm〉)
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Now take f(x) = tanh(x). Then 〈σ1σ2〉 = 〈f(l1)σ2〉 (since f(l1) is the conditional expecta-
tion of σ1 given the rest of the spins). Thus E〈σ1σ2〉2 = E(〈f(l1)σ2〉〈σ1σ2〉).

Let b1 = σ2, b2 = σ1σ2. Since ψ is a symmetric density and tanh is odd, Mf = 0. Let
h = Uf . Applying the expansion lemma,

E〈σ1σ2〉2 =0− 1

N

N∑
j=2

E(〈σ1h(l1)σ2〉〈σ2σj〉)

+
2

N

N∑
j=2

E(〈σjh(l1)σ2〉〈σ2σj〉〈σ1σj〉)

+
1

N
E(〈h′(l1)σ2〉〈σ1σ2〉)

+
1

N
E(〈h(l1)σ1σ2〉〈σ1σ2〉)

To simplify the above, let Rem denote any term that is bounded by CN−1
√

E〈R12〉2 for
some constant C.

Since h′ is bounded, so

1

N
E(〈h′(l1)σ2〉〈σ1σ2〉) ≤

C

N
E|〈σ1σ2〉| ≤

C

N

√
E〈σ1σ2〉2

≤ C ′

N

√
E

1

N2

∑
i,j

〈σiσj〉2 =
C ′

N

√
E〈R12〉2.

So the fourth term is Rem. The last term is also Rem. Any single term in the sum in the
third term is also Rem. In the 2nd term, for j = 2, we get 1

NE〈h(l1)〉. All other terms are
Rem. So

E〈σ1σ2〉2 = − 1

N
E〈h(l1)〉 −E(〈h(l1)σ2σ3〉〈σ2σ3〉)− 2E(〈h(l1)σ2σ3〉〈σ1σ2〉〈σ1σ3〉)−Rem.

This is the first expansion. To complete the proof, we apply the expansion lemma to each
of the above terms. It will be enough to show:

−E〈h(l1)〉
N

=
1

N
+Rem,

−E(〈h(l1)σ2σ3〉〈σ2σ3〉) = E〈σ1σ2〉2 + T1,

where |T1| ≤ CE〈|R12|3〉, and

|E(〈h(l1)σ2σ3〉〈σ1σ2〉〈σ1σ3〉)| ≤ CE〈|R12|3〉+Rem.
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If we can show the above, then

E〈σ1σ2〉2 =
1

N
+ E〈σ1σ2〉2 + T1 + T2

where T1, T2 are bounded by CE〈|R12|3〉+Rem. So

1

N
≤ CE〈|R12|3〉+Rem ≤ CE〈|R12|3〉+

C ′
√

E〈R2
12〉

N

Now
√

E〈R2
12〉 ≤ (E〈|R12|3〉)1/3. Suppose E〈|R12|3〉 ≤ 1

2CN . Then we get 1/N ≤
1/2N+(C ′/N)(1/2CN)1/3, a contradiction when N is large enough. So for N large enough,
E〈|R12|3〉 ≥ 1

2CN .

To prove the above three statements:

Apply the approximation lemma, and only the first terms will matter. Let w = Uh (so we
invert the Stein operator again). Verify that Mh = −1. By the expansion lemma,

E〈h(l1)〉 = −1 +
1

N

N∑
j=2

E(〈σjw(l1)〉〈σ1σj〉) +
E〈w′(l1)〉+ E〈σ1σj〉

N

= −1 +Rem+O(1/N).

Using the expansion lemma on the second term, E(〈h(l1)σ2σ3〉〈σ2σ3〉) = (Mh)E〈σ2σ3〉2 =
−E〈σ2σ3〉2 = −E〈σ1σ2〉2 with some remainder terms. The third term can also be bounded
through the expansion lemma.

Lastly, a sketch of the proof of the expansion lemma:

We want to find E〈f(l1)b1〉 · · · 〈bm〉. Let h = Uf so that h′(x) − (x − tanh(x))h(x) =
f(x) −Mf . Replace f(l1) −Mf by h′(l1) − l1h(l1) + tanh(l1)h(l1) and apply integration
by parts on the terms arising from l1h(l1).

2

Exercise 78 Get an upper bound for E〈|R12|3〉.

Exercise 79 Evaluate
lim
N→∞

E(N〈R12R23R31〉)

or, alternatively,
lim
N→∞

E(N〈σ1σ2〉〈σ2σ3〉〈σ3σ1〉)

You can use Guerra’s result.
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We will again consider the SK model with parameters β and h. Let

l1 =
1√
N

N∑
j=2

g1jσj ,

and

r1 =
1√
N

N∑
j=2

g1j〈σj〉 − β(1− q)〈σ1〉.

We previously sketched that l1 is approximately equal in distribution to a random variable
with density proportional to

cosh(βx+ h) exp

(
−(x− r1)2

2(1− q)

)
. (107)

More precisely, let ν1 be the random probability measure associated with the above density.
Then for any bounded measurable function f ,

E

(
〈f(l1)〉 −

∫
f(x)ν1(dx)

)2

≤ c‖f‖∞√
N

. (108)

Exercise 80 Improve
√
N to N .

Exercise 81 Get a bound on E[(〈f(l1)〉 −
∫
f(x)ν1(dx))2k]. It should look something like

c‖f‖k∞
Nk or c‖f‖k∞

Nk/2 .

Exercise 82 Get results for multiple local fields l1, l2, ..., lp where p is fixed. Even the case
p = 2 would be interesting. When N is large, these become almost independent. Get
something like 〈f1(l1)f2(l2)...fp(lp)〉 '

∏p
i=1

∫
f(x)νi(dx).

Next class we will look at TAP equations for some other models.

We saw that if W is a random variable with E(W 2) <∞ such that E[Wϕ(W )] = E[Tϕ′(W )]
for some bounded random variable T , then we can prove Tusnády’s lemma for W . Many
other things can be derived from this equation, the following lemma for example.
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Lemma 83 Suppose E[Wϕ(W )] = E[Tϕ′(W )] for all Lipschitz ϕ. Then for any σ2,

dTV (W,N(0, σ2)) ≤ 2 E |T − σ2|
σ2

, (109)

where dTV denotes the total variation distance. In particular, if σ2 = Var(W ), the upper
bound is

dTV (W,N(0, σ2)) ≤
2
√

Var(T )

σ2
. (110)

Proof: Taking ϕ(x) ≡ 1 we get E(W ) = 0, and taking ϕ(x) = x gives E(T ) = Var(W ).
Given a bounded measurable function f such that 0 ≤ f ≤ 1, find ϕ such that

σ2ϕ′(x)− xϕ(x) = f(x)−E[f(Z)]

where Z is N(0, σ2). Then

E[f(W )]−E[f(Z)] = σ2 E[ϕ′(W )]−E[Wϕ(W )]

= E[(σ2 − T )ϕ′(W )]

≤ 2 E |T − σ2|
σ2

since for 0 ≤ f ≤ 1, ‖ϕ′‖ ≤ 2
σ2 . 2

Suppose W = f(X1, X2, ..., Xn) where X1, X2, ..., Xn are i.i.d. standard Gaussian. Then
there is a generic way to obtain T : let X = (X1, X2, ..., Xn) and let Y = (Y1, Y2, ..., Yn) be
independent of X and identically distributed. Then take

T =

∫ 1

0

1

2
√
t

n∑
i=1

∂f

∂xi
(X)

∂f

∂xi
(
√
tX +

√
1− tY ) dt. (111)

For T we can also take the expectation of the above expression conditioned on X or W .
With this T , we have E[Wϕ(W )] = E[Tϕ′(W )] for all absolutely continuous ϕ.

An application: take ϕ(x) = x to see

Var(W ) = E(T ) =

∫ 1

0

1

2
√
t
E

[ n∑
i=1

∂f

∂xi
(X)

∂f

∂xi
(
√
tX +

√
1− tY )

]
dt.

Let Xt =
√
tX +

√
1− tY . Then

E

[ n∑
i=1

∂f

∂xi
(X)

∂f

∂xi
(Xt)

]
≤ E

√√√√ n∑
i=1

(
∂f

∂xi
(X)

)2 n∑
i=1

(
∂f

∂xi
(Xt)

)2


≤
√

E[‖∇f(X)‖2] E[‖∇f(Xt)‖2]
= E[‖∇f(X)‖2].
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Suppose f is Lipschitz with constant A, that is, ‖f(x)− f(y)‖ ≤ A‖x− y‖ for all x and y.
Then ‖∇f(x)‖ ≤ A for all x. Thus, with T defined as in (111), we have |T | ≤ A2 almost
surely.

Let m(θ) = E(eθW ). Then

m′(θ) = E(WeθW ) = θE(TeθW ) ≤ θA2m(θ),

so
d

dθ
logm(θ) =

m′(θ)

m(θ)
< A2θ

and

logm(θ) ≤ logm(0) +
A2θ2

2
=
A2θ2

2
.

This gives
m(θ) ≤ exp(A2θ2/2),

therefore
P(|W | ≥ t) ≤ exp(−θt+A2θ2/2) (112)

for any θ > 0.

Theorem 84 (Gaussian Concentration Inequality) Suppose f : Rn → R is an A-
Lipschitz function, and X = (X1, X2, ..., Xn) is a random vector made up of i.i.d. standard
Gaussian entries. Then

P(|f(X)−E[f(X)]| ≥ t) ≤ 2e−t
2/2A2

(113)

for all t ≥ 0.

Now, let’s prove that our T in (111) works if we assume E[f(X)] = 0.

E[Wϕ′(W )] = E[ϕ(f(X))(f(X)− f(Y ))]

=

∫ 1

0
E[ϕ(f(X))

d

dt
f(Xt)] dt

=

∫ 1

0
E

[
ϕ(f(X))

n∑
i=1

∂f

∂xi
(Xt)

(
Xi

2
√
t
− Yi

2
√

1− t

)]
dt.

Now fix some i and t and let Xt,i =
√
tXi +

√
1− tYi. Let Zt =

√
1− tX −

√
tY , and

Zt,i =
√

1− tXi−
√
tYi. Then

√
tXt,i+

√
1− tZt,i = Xi, and Cov(Xt,i, Zt,i) = 0, so because

they are Gaussian, Xt,i and Zt,i are independent. Therefore,

E

[
ϕ(f(X))

∂f

∂xi
(Xt)

(
Xi

2
√
t
− Yi

2
√

1− t

)]
=

1

2
√
t(1− t)

E

[
ϕ(f(

√
tXt +

√
1− tZt))

∂f

∂xi
(Xt)Zt,i

]
.
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Integrate by parts to obtain

=
1

2
√
t(1− t)

E

[
ϕ′(f(X))

∂f

∂xi
(X)
√

1− t ∂f
∂xi

(Xt)

]
.

This completes the proof.
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34 Gaussian concentration recap

If (W,T ) is a pair of random variables such that

E[Wϕ(W )] = E[Tϕ′(W )] (114)

for all Lipschitz ϕ, then for any σ2 > 0

dTV
(
L(W ),N (0, σ2)

)
≤ 2E|T − σ2|

σ2
, (115)

where L(W ) is the law of W . In particular, if σ2 = Var(W ), it is easy to see that E[T ] = σ2,
and hence

dTV
(
L(W ),N (0, σ2)

)
≤

2
√

Var(T )

σ2
. (116)

So how do we plan to use this? We have the following canonical construction: let
X = (X1, X2, . . . , Xn) be a vector of iid N (0, 1) random variables and f : Rn → R be
an absolutely continuous function. Then for W = f(X) with E[W ] = 0, E[W 2] < ∞ we
have

E[Wϕ(W )] = E[Tϕ′(W )] , (117)

for all Lipschitz ϕ, where

T =

∫ 1

0

1

2
√
t

n∑
i=1

∂f

∂Xi
(X)

∂f

∂Xi
(Xt)dt (118)

where Xt =
√
t X +

√
1− t Y and Y = (Y1, Y2, . . . , Yn) are also iid N (0, 1).

With this tool we proved the Gaussian Poincaré inequality and the Gaussian concentration
inequality. Today we will start a method for obtaining normal approximations for quite
complicated functions. For example, we will look at linear statistics of the eigenvalues of
random matrices.
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35 A CLT for functions of Gaussians

To get a CLT we first need to prove the concentration of T given by (118). Clearly, we can
replace T by the conditional expectation T (x) = E[T |X = x]. This requires some ugly but
straightforward calculation4. We begin by writing T (x):

T (x1, x2, . . . , xn) =

∫ 1

0

1

2
√
t
E

[
n∑
i=1

∂f

∂xi
(x)

∂f

∂xi
(
√
t x +

√
1− t Y)

]
dt (119)

Letting σ2 = Var(W ), we have

dTV
(
L(W ),N (0, σ2)

)
≤ 2

σ2

√
Var(T (x)) (120)

By the Poincaré inequality,

Var(T (X)) ≤ E ‖∇T (X)‖2 (121)

These give what one might call the “2nd order Poincaré inequalities.”

Continuing with the computation:

∂T

∂xi
(x) =

∫ 1

0

1

2
√
t
E


n∑
j=1

∂2f

∂xi∂xj
(x)

∂f

∂xj
(
√
t x +

√
1− t Y)︸ ︷︷ ︸

Ai(t)

(122)

+
√
t
n∑
j=1

∂f

∂xj
(x)

∂2f

∂xi∂xj
(
√
t x +

√
1− t Y)︸ ︷︷ ︸

Bi(t)

 dt . (123)

What we really want to bound is the sum of squares of this expression. Using the inequality
(a+ b)2 ≤ 2a2 + 2b2 and Jensen’s inequality, we get

n∑
i=1

(
∂T

∂xi
(x)

)2

≤ 2
n∑
i=1

(∫ 1

0

1

2
√
t
E[Ai(t)]dt

)2

+ 2
n∑
i=1

(∫ 1

0

1

2
E[Bi(t)]dt

)2

(124)

≤ 2E

∫ 1

0

1

2
√
t

n∑
i=1

Ai(t)
2dt+ 2E

∫ 1

0

1

4

n∑
i=1

Bi(t)
2dt . (125)

4You should be used to this by now!
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Turning to the first term,

n∑
i=1

Ai(t)
2 =

n∑
i=1

 n∑
j=1

∂2f

∂xi∂xj
(x)

∂f

∂xj
(
√
t x +

√
1− t Y)

2

(126)

=
∥∥∥Hess f(x) · ∇f(

√
t x +

√
1− t Y)

∥∥∥2 (127)

≤ ‖Hess f(x)‖2 ·
∥∥∥∇f(

√
t x +

√
1− t Y)

∥∥∥2 . (128)

We can get a similar bound for Bi(t).

Note that in computing E ‖∇T (X)‖ we will encounter terms that can be bounded using

the Cauchy-Schwarz inequality and the fact that X
d
= Xt.

E
[
‖Hess f(X)‖2 · ‖∇f(Xt)‖2

]
≤
(
E ‖Hess f(X)‖4

)1/2 (
E ‖∇f(Xt)‖4

)1/2
. (129)

Thus

Var(T (X)) ≤ E ‖∇T (X)‖ (130)

≤
(

2

∫ 1

0

1

2
√
t
dt+ 2

∫ 1

0

1

4
dt

)(
E ‖Hess f(X)‖4 E ‖∇f(Xt)‖4

)1/2
(131)

=
5

2

(
E ‖Hess f(X)‖4 E ‖∇f(Xt)‖4

)1/2
. (132)

We then have

dTV
(
L,N (0, σ2)

)
≤ 2

σ2

√
5

2

(
E ‖Hess f(X)‖4 E ‖∇f(Xt)‖4

)1/4
(133)

=

√
10

σ2

(
E ‖Hess f(X)‖4 E ‖∇f(Xt)‖4

)1/4
. (134)

We have proved the following

Theorem 85 If W = f(X1, X2, . . . , Xn) where X = (X1, X2, . . . , Xn) is a vector of iid
N (0, 1) random variables with E[W ] = 0, E[W 2] = σ2, and f ∈ C2(Rn), then

dTV
(
L(W ),N (0, σ2)

)
≤
√

10

σ2

(
E ‖Hess f(X)‖4 E ‖∇f(Xt)‖4

)1/4
. (135)

Exercise 86 Improve this theorem so that it doesn’t have any 4th powers.
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36 Looking forward : eigenvalues of random matrices

What sort of problems can we tackle with this machinery? Suppose

(Xij)1≤i,j<∞ (136)

are iid N (0, 1) random variables and let

An =
1√
n

(Xij)1≤i,j<∞ . (137)

This is sometimes called the real Ginibré ensemble. The eigenvalues λ1, λ2, . . . , λn of An
are approximately uniformly distributed on the unit disc, in the following sense:

1

n

n∑
i=1

δλi
a.s.−→ Uniform(unit disc in C) . (138)

We can look at sums of the form

n∑
i=1

f(λi) , (139)

for some function f : C → C. It turns out that under very general conditions on f , this is
asymptotically Gaussian, meaning

n∑
i=1

f(λi)−E

[
n∑
i=1

f(λi)

]
(140)

converges in law. For symmetric random matrices, Sinai and Soshnikov proved this in 1998.

We will conclude with a brief chronology of the relevant results.

1. Jonsson, D. Some limit theorems for the eigenvalues of a sample covariance
matrix J. Multivariate Anal. 12 1–38 (1982).
Discusses sample covariance or Wishart matrices, which are of the form ATA, where
A is a matrix whose rows are sample data points.

2. Ya. Sinăı, A. Soshnikov, Central limit theorem for traces of large random
symmetric matrices, Bol. Soc. Brasil. Mat., 29, No. 1, 1-24 (1998).

3. Ya. Sinăı, A. Soshnikov, A refinement of Wigner’s semicircle law in a
neighborhood of the spectrum edge for random symmetric matrices, Func-
tional Anal. Appl. 32, No. 2, (1998).
These papers prove a refinement and CLT for Wigner matrices, which are symmetric
random matrices.
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4. Johansson, K. On fluctuations of eigenvalues of random Hermitian matri-
ces. Duke Math. J. 91 151–204 (1998).
This paper studies matrices whose entries have joint density proportional to
exp(−nTr(V (A))), where V is a polynomial.

5. Diaconis, P. and Evans, S.N. Linear functionals of eigenvalues of random
matrices. Trans. Amer. Math. Soc. 353 2615–2633 (2001).
This paper studies random unitary matrices and uses connections to symmetric func-
tions.

6. Chatterjee, S. Fluctuations of eigenvalues and second order Poincaré in-
equalities. arXiv:0705.1224v2 [math.PR].
This will be our plan for the next few lectures.
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Lecture date: Nov 9, 2007 Scribe: Guy Bresler

37 Matrix Norms

In this lecture we prove central limit theorems for functions of a random matrix with
Gaussian entries. We begin by reviewing two matrix norms, and some basic properties and
inequalities.

1. Suppose A is a n× n real matrix. The operator norm of A is defined as

‖A‖ = sup
|x|=1

‖Ax‖, x ∈ Rn.

Alternatively,

‖A‖ =
√
λmax(ATA),

where λmax(M) is the maximum eigenvalue of the matrix M .

Basic properties include:

‖A+B‖ ≤ ‖A‖+ ‖B‖
‖αA‖ = |α|‖A‖
‖AB‖ ≤ ‖A‖‖B‖.

2. The Hilbert Schmidt (alternatively called the Schur, Euclidean, Frobenius) norm is
defined as

‖A‖HS =

√∑
i,j

a2ij =
√

Tr(ATA).

Clearly,
‖A‖HS =

√
sum of eigenvalues of ATA,

which implies that
‖A‖ ≤ ‖A‖HS ≤

√
n‖A‖.

Of course, ‖A‖HS also satisfies the usual properties of a norm.

Proposition 87 The following inequality holds:

‖AB‖HS ≤ ‖A‖‖B‖HS.
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Proof: Let b1, . . . , bn denote the columns of B. Then

‖AB‖2HS =

n∑
i=1

‖Abi‖2 ≤
n∑
i=1

‖A‖2‖bi‖2 = ‖A‖2‖B‖2HS.

2

3. A simple matrix inequality follows from the Cauchy-Schwarz inequality:

|Tr(AB)| =
∑
i,j

aijbji ≤ ‖A‖HS‖B‖HS.

4. Combining the proposition above with observation 3 gives the inequality

|Tr(ACBD)| ≤ ‖AC‖HS‖BD‖HS ≤ ‖A‖‖B‖‖C‖HS‖D‖HS.

More generally, it holds that

|Tr(A1A2 . . . , Ak)| ≤ ‖Ai‖HS‖Aj‖HS

∏
l 6=i,j
‖Al‖.

Next, recall the theorem from last lecture:

Theorem 88 Let X1, . . . , Xk be i.i.d. N (0, 1) random variables. Let f ∈ C2(Rn) and
W = f(X) with EW = 0. Then

dTV (L(W ),N (0, σ2)) ≤
√

10

σ2
(E‖Hess f(X)‖4E‖∇f(X)‖4)

1
4 .

We will use this theorem to study the Gaussian random matrix.

38 CLT for Tr(Ak)

Suppose

A =
1√
N

(Xij)1≤i,j≤N ,

where Xij
i.i.d.∼ N (0, 1). Fix a positive integer k. We would like a CLT for Tr(Ak).

To begin, note that

Tr(Ak) =
1

Nk/2

∑
1≤i1,i2,...,ik≤N

Xi1,i2Xi2,i3 . . . Xik−1,ikXik,i1 . (141)

It turns out that the usual dependency graph theorem fails for k ≥ 3, so a more powerful
method must be used.
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Exercise 89 Find a dependency graph theorem that works for all k.

In order to apply Theorem 88, we identify

X = (X11, X12, . . . , X1k, X21, X22, . . . , XNN ) ,

and f(X) = Tr(Ak). Now

∂f

∂xij
= Tr(

∂

∂xij
Ak)

(a)
= Tr

(
k−1∑
r=0

Ar
∂A

∂xij
Ak−1−r

)
(b)
= kTr

(
∂A

∂xij
Ak−1

)
, (142)

where (a) follows from the fact that for two matrices A and B, ∂
∂xAB = ∂A

∂xB + A∂B
∂x , and

(b) from moving the trace inside the sum and using Tr(AB) = Tr(BA). But

∂A

∂xij
=

1√
N
eie

T
j ,

where ei is the ith standard basis vector, i.e. the vector of all zeros with a 1 in the ith
position.

Thus

∂f

∂xij
=

k√
N

Tr(eie
T
j A

k−1)

=
k√
N

Tr(eTj A
k−1ei)

=
k√
N

(Ak−1)ji

This allows us to calculate

‖∇f(X)‖2 =
∑(

∂f

∂xij

)2

=
k2

N

∑
i,j

(Ak−1)2ji

=
k2

N
‖Ak−1‖2HS

≤ k2

N
N‖Ak−1‖2

≤ k2‖A‖2(k−1) .

(143)

Lemma 90
E‖A‖p ≤ C(p) ∀p ∈ Z+ ,

where C(p) is a constant independent of N .
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Proof: The proof is essentially as follows. For a positive definite random matrix B, ‖B‖ =
λmax(B). Thus

E‖B‖p = Eλpmax ≤ (Eλpmmax)1/m for any m

≤ (E Tr(Bpm))1/m .

Now let m→∞ suitably with N .2

This shows that ‖∇f(X)‖2 = O(1), and hence the Poincaré inequality implies that
Var(f(X)) = O(1).

Exercise 91 Show that any two terms in the sum of equation (141) have non-negative
covariance.

The exercise implies that

Var(f(X)) ≥ 1

Nk

∑
Var(Xi1,i2 . . . Xik,i1) ≥ C(k) > 0 .

Recalling the result of Theorem 88,

dTV (L(W ),N (0, σ2)) ≤
√

10

σ2
(E‖Hess f(X)‖4E‖∇f(X)‖4)

1
4 ,

we see that σ2 = Var(f(X)) ≥ C(k) and from equation (143) and the fact noted above,
E‖∇f(X)‖2 ≤ C(k). Therefore it remains only to show that E‖Hess f(X)‖4 → 0 in order
to prove the desired central limit theorem.

We have
∂A

∂xij
= kTr

(
∂A

∂xij
Ak−1

)
,

and

∂2A

∂xpqxij
= kTr

(
k−2∑
r=0

∂A

∂xij
Ar

∂A

∂xpq
Ak−r−2

)
.

Fact about matrix norms: If A is a symmetric, real matrix then

‖A‖ = sup
‖x‖=‖y‖=1

|xTAy| .

Now, Hess f(X) is an N2 ×N2 symmetric, real matrix:

‖Hess f(X)‖ = sup

∑
ijpq

cijdpq
∂2f

∂xij∂xpq
:
∑

c2ij = 1,
∑

dpq = 1

 .
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Let C = (cij) and D = (dpq) be two matrices with ‖C‖HS = ‖D‖HS = 1. Fix 0 ≤ r ≤ k − 2.
Then∑
ijpq

cijdpqTr

(
∂A

∂xij
Ar

∂A

∂xpq
Ak−2−r

)
=

1

N

∑
cijdpq Tr(eie

T
j A

repe
T
q A

k−2−r) =
1

N
Tr(CArDAk−2−r) ,

where we used the fact that
∑
cijeie

T
j = C and similarly for D.

Now
|Tr(CArDAk−2−r)| ≤ ‖A‖k−2‖C‖HS‖D‖HS = ‖A‖k−2 .

Thus

‖Hess f(X)‖ ≤ k(k − 1)‖A‖k−2

N
.

Combining, we get the desired result:

dTV (Tr(Ak),N (0, σ2)) ≤ C(k)

N
.
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39 Zero Bias Coupling

Consider a random variable W with EW = 0 and EW 2 = σ2 <∞. Define

ρ(x) =
1

σ2
E(W1(W≥x)).

Lemma 92 ρ is a probability density

Proof:

• ρ(x) ≥ 0 for all x. For x ≥ 0 this is obvious, for x < 0 note E(W1(W≥x)) =
−E(W1(W<x)) ≥ 0

•
∫
ρ(x)dx = 1:∫

ρ(x)dx =

∫
x<0
−E(W1(W<x))dx+

∫
x≥0

E(W1(W≥x))dx

Let µ denote the law of W . Then∫
x≥0

E(W1(W≥x))dx =

∫
x≥0

∫
y≥x

ydµ(y)dx =

∫
y≥0

∫
x≤y

y dx dµ(y) =

∫
y≥0

y2dµ(y)

and similarly for the second term.2

The distribution corresponding to this density is called the “zero bias transform”. If W ∗ is
a random variable following the zero-bias transform of the law of W , then for all absolutely
continuous ϕ we have

EWϕ(W ) = σ2Eϕ′(W ∗)

(this is immediate from integration by parts). If W ∼ N(0, 1) then

ρ(x) =

∫
y≥x

ye−y
2/2

√
2π

dy =
e−x

2/2

√
2π

so that W W ∗, i.e. the standard normal distribution is a fixed point of the zero bias
transform.

Example: W ∼ ±1. Then W ∗ ∼ Uni[−1, 1].
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Theorem 93 If EW = 1, EW 2 = 1, then Wass(W,Z) ≤ 2Wass(W,W ∗)

Proof: Take any 1-Lipschitz h. Find ϕ such that ϕ′(x)−xϕ(x) = h(x)−Eh(Z). By earlier
results we know ‖ϕ′′‖∞ ≤ 2‖h′‖∞ ≤ 2. Now suppose W and W ∗ live on the same space.
Then

|E(h(W ))− E(h(Z))| = |E(ϕ′(W )−Wϕ(W ))| = |E(ϕ′(W )− ϕ′(W ∗))| ≤ 2E|W ∗ −W |

SInce this is true for any coupling, any h Lipschitz we have

Wass(W,Z) ≤ 2 inf
W,W ∗

E|W ∗ −W | = 2Wass(W,W ∗)

Example: suppose X1, . . . , Xn i.i.d. mean 0 variance 1, W =
∑
Xi√
n

. For each i let Xi be

independent of everything else. Let I ∼ Unif{1, . . . , n} independent of everything else.
Define

W ∗ :=
1√
n

∑
i 6=I

Xi +X∗I


We claim this is a zero bias transform:

EWϕ(W ) =
1√
n

∑
EXiϕ(W ) =

1√
n

∑
E

Xiϕ

 1√
n

∑
j 6=i

Xj +Xi


1√
n

∑
E

ϕ′
 1√

n

∑
j 6=i

Xj +X∗i

 1√
n


= E(ϕ′(W ∗))

Thus

Wass(W,Z) ≤ 2E|W ∗ −W | = 2E| 1√
n

(XI −X∗I )| = 2E| 1√
n

(X1 −X∗1 )| ≤ . . .

Theorem 94 (Goldstein-Reinert) Suppose Y, Y ′ are an exchangeable pair, EY = 0, EY 2 =
σ2 and E(Y ′|Y ) = (1− λ)Y . Let ν denote the joint distribution of (Y, Y ′). Let

dµ(y, y′) =
(y − y′)2

E(Y − Y ′)2
dν(y, y′).

Suppose (Ŷ , Ŷ ′) ∼ µ. Let U ∼ Uni[0, 1] independent of all else. Y ∗ = UŶ + (1 − U)Ŷ ′.
Then Y ∗ is a zero bias transform of Y .
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Note that Ef ′(Ua+ (1− U)b) = f(b)−f(a)
b−a , hence

σ2E(f ′(Y ∗)) = σ2E

(
f(Ŷ )− f(Ŷ ′)

Ŷ − Ŷ ′

)

=
σ2

E(Y − Y ′)2
E[(Y − Y ′)(f(Y )− f(Y ′))] =

2λσ2E[Y f(Y )]

E(Y − Y ′)2
= EY f(Y )

Exercise: Try to get Hoeffding CLT using this method.

Exercise: Suppose EWϕ(W ) = ETϕ′(W ).Then E(T |W ) is the density of Law(W ∗) w.r.t.
Law(W ) evaluated at W . We have Tusnády’s lemma based on concentration of T . On the
other hand, if W,W ∗ can be constructed to be close to each other then we can construct
W,Z such that E|W − Z| is small. Question: If we know tail bounds on |W −W ∗| can we
construct (W,Z) with fast decaying tails for W − Z?
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Size Bias Transformations

Size bias transformations are a classical topic in probability, with applications to sampling
theory. Their first connection with Stein’s method was in a paper by Goldstein and Rinott.

The definition and idea behind size bias transformations

Suppose W is a non-negative random variable with mean λ. A random value W ∗ is called
a size bias transformation of W if

∀g.EWg(W ) = λE g(W ∗).

Now, if µ is the law of W , then

dµ
∗(x) =

x

λ
dµ(x)

is again a probability measure, and if W ∗ ∼ µ∗, then W ∗ is a size bias transform of W .

For example:

Let X1, . . . , Xn be independent, non-negative random variables and W =
n∑
i=1

Xi.

For each i, let X∗i be a size bias transform of Xi.
Let

W ∗ = Wi +X∗i =
∑
j 6=i

Xj +X∗i ,

with probability
E(Xi)
n∑
j=1

E(Xj)

.
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Then,

EWg(W ) =

n∑
i=1

E (Xig(W ))

=

n∑
i=1

E (Xig(Wi +Xi))

=

n∑
i=1

E(Xi)Eg (Wi +X∗i )

=

(∑
i

E(Xi)

)
n∑
i=1

E(Xi)∑
j E(Xj)

Eg(Wi +X∗i )

= E(W )Eg(W ∗)

So, now the question is:
If we have a size bias transformation, how can we use it to get a Central Limit Theorem?

The idea is that if W ∗−W is “small”, say relative to W , and E(W ∗−W |W ) is concentrated
in an appropriate scale, then W is approximately normal.

Why is that?

Take any bounded Lipschitz function h, and let z ∼ N(0, 1).
Let f solve the usual Stein’s Equation:

f ′(x)− xf(x) = h(x)−Eh(Z)

Let g(x) = f
(
x−λ
σ

)
, where λ = E(W ), and σ2 = Var(W ).

We would like to bound

Eh

(
W − λ
σ

)
−Eh(Z)

= E

[
f ′
(
W − λ
σ

)
−
(
W − λ
σ

)
f

(
W − λ
σ

)]
= E

[
σg′(W )−

(
W − λ
σ

)
g(W )

]
.
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Now EWg(W ) = λEg(W ∗), and so,

E

[
σg′(W )−

(
W − λ
σ

)
g(W )

]
= E

[
σg′(W )− λ

σ
(g(W ∗)− g(W ))

]
.

Using the size bias property, one can show that,

E(W ∗ −W ) =
σ2

λ

(take g(x) = x− λ).

We can approximate,
g(W ∗)− g(W ) ≈ (W ∗ −W )g′(W ),

and
E
(
(W ∗ −W )g′(W )

)
= E

(
E(W ∗ −W |W )g′(W )

)
.

Thus, if E(W ∗ −W |W ) is concentrated, then

E
(
E(W ∗ −W |W )g′(W )

)
≈ E(W ∗ −W )Eg′(W ) =

σ2

λ
Eg′(W ).

Thus,

E

[
λ

σ
(g(W ∗)− g(W ))

]
≈ E

[
λ

σ

σ2

λ
g′(W )

]
= σEg′(W )

So, if the assumptions that W ∗−W is small and E(W ∗−W |W ) is concentrated hold, we
get a Normal approximation theorem.

Goldstein and Rinott show that∣∣∣∣Eh(W − λσ

)
−Eh(Z)

∣∣∣∣ ≤ 2λ‖h‖∞
σ2

√
Var (E(W ∗ −W |W ) + ‖h‖∞

λ

σ3
E(W ∗ −W )2.

Their paper has details and examples.

Note that a “zero bias transform” gets its name by being a limiting case of a size bias
transform.
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Interaction Graphs

Suppose you have n points chosen uniformly at random from the unit square, [0, 1]2.
Let di be the distance from the i’th point to its nearest neighbor.

Can we get a Central Limit Theorem for
n∑
i=1

di ?

The challenge with such a limit is that the dependence between the points, or the values of
di, are only apparent after all of the points are present.

We can approach the problem by using Interaction Graphs.

Definitions

Consider the Polish Space X , e.g. Rd.
A map G that takes a point x ∈ X n and outputs an undirected graph on [n] = {1, . . . , n}
will be called a “graphical rule”.

A graphical rule is called “symmetric” if when you permute the coordinates, the graph
permutes:

∀π ∈ Sn,∀x ∈X n, G
(
xπ(1), . . . , xπ(n)

)
= {(π(i), π(j)) | (i, j) ∈ G(x)}

Given a function f : X n −→ R, we want to associate a graph G with it. First, some more
definitions:

∀i let xi = (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

∀i, j, xij =
(
x1, . . . , xi−1, x

′
i, xi+1, . . . , xj−1, x

′
j , xj+1, . . . , xj

)
Say that two indices i and j are “non-interacting” under the triplet (f, x, x′) if,

f(x)− f(xj) = f(xi)− f(xij).

Note that the definition is symmetric in i and j. This is a discrete analog of ∂2f
∂xi∂xj

(x) = 0.

Given a function f , we say that a symmetric graphical rule or model G is an interction
graph for f if,

∀x, x′ ∈X n, ∀i, j,
(i, j) /∈ G(x), G(xi), G(xj), or G(xij) =⇒ (i, j) non-interacting under (f, x, x′).
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This definition of an interaction graph states that xi and xj are far apart in all four graphical
rules. Thus i and j are “non-interacting” in (f, x, x′).

This is a type of functional independence.

Given a symmetric graphical rule G on X n, and another rule G′ on X m,m > n, we say
G′ is an extension of G if,

whenever x = (x1, . . . , xn) ⊆ y = (y1, . . . , ym), in the sense that
∃i1, i2, . . . , in(distinct) ∈ [m] such that ∀k, yik = xk,
we have G(x) as the induced subgraph of G′(y).
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Theorem 95 Let X be a Polish space and X1, X2, . . . be iid X -valued random variables.

Suppose f : X → R is measurable.

Let W = f(X1, . . . , Xn) such that E(W ) = 0 and E(W 2) = σ2 <∞.

Let G be an interaction rule for f with extension G′ to X n+4.

Let X ′1, X
′
2, . . . be independent copies of X1, X2, . . ..

Let there be the discrete derivative ∆j:

∆jf(X) := f(X1, . . . , Xn)− f(X1, . . . , Xj−1, X
′
j , Xj+1, . . . , Xn).

Let M = max |∆jf(X)| , and let δ = 1+ the degree of vertex 1 in G′(X1, . . . , Xn+4).

Then,

Wass

(
W −E(W )√

Var(W )
, N(0, 1)

)
≤
Cn

1
2

[
E(M8)

1
4 E(δ4)

1
4

]
σ2

+
1

2σ3

∑
j

E |∆jf(X)|3

Next time we will see examples of the uses of interaction graphs, such as in calculating the
number of empty boxes when n balls are dropped into αn boxes.
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