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Chapter 1

Some History

At present we know three different methods for constructing Hilbert class fields: an analytic method
based on the theory of complex multiplication (which only works well over imaginary quadratic number
fields), another one using the Stark conjectures on values of L-functions and their derivatives at s = 0,
and an arithmetic method based on Kummer theory. In this chapter, we will survey our knowledge on
class field towers, with special attention given to Scholz’s and Taussky’s work on the capitulation of ideal
classes. In Chap. 3 we will give more details on constructing Hilbert class fields and present connections
with Herbrand’s theorem on the structure of the p-class group of Q(ζp) and Leopoldt’s Spiegelungssatz.
We will also try to give a reasonably complete list of references.

1.1 The Prehistory

1.1.1 Fermat, Euler, and Gauß: Binary Quadratic Forms

The prehistory of Hilbert class fields starts with the work of Fermat and Euler on non-unique factorization
in quadratic number fields, or rather on the representability of primes by binary quadratic forms. Fermat
used his method of descente infinie to show that, for example, an odd prime p is the sum of two squares
if and only if p ≡ 1 mod 4. As every student of algebraic number theory knows, this is a corollary of
the fact that in Z[

√
−1 ] the theorem of unique factorization into prime elements holds (up to factors of

units, of course). In a similar vein, the results

p = x2 + 2y2 ⇐⇒ p = 2 or p ≡ 1, 3 mod 8
p = x2 + 3y2 ⇐⇒ p = 3 or p ≡ 1 mod 3,

}
(∗)

also proved by Fermat, can be viewed as encoding the unique factorization theorem for the integral
domains Z[

√
−2 ] and Z[ρ], where ρ2+ρ+1 = 0. On the other hand, Fermat noticed that the corresponding

result for Z[
√
−5 ] does not hold; in fact he conjectured that

p ≡ 1, 9 mod 20 =⇒ p = x2 + 5y2

p, q ≡ 3, 7 mod 20 =⇒ pq = x2 + 5y2

}
(∗∗)

but could not find a proof. Neither could Euler, who conjectured more precisely that

p = x2 + 5y2 ⇐⇒ p = 5 or p ≡ 1, 9 mod 20
2p = x2 + 5y2 ⇐⇒ p = 2 or p ≡ 3, 7 mod 20.

(Studying the divisors of other quadratic forms, Euler was led to conjecture the quadratic reciprocity
law.) It was Lagrange who finally found a proof for (∗) and (∗∗); he showed that

p = x2 + 5y2 ⇐⇒ p = 5 or p ≡ 1, 9 mod 20
p = 2x2 + 2xy + 3y2 ⇐⇒ p = 2 or p ≡ 3, 7 mod 20,

1



which contains Euler’s and Fermat’s conjectures because of the identity

(2x2 + 2xy + 3y2)(2u2 + 2uv + 3v2) = (2xu+ xv + yu+ 3yv)2 + 5(xv − yu)2.

The point is now that (∗) and (∗∗) imply the failure of unique factorization in Z[
√
−5 ]: in fact,

3 · 7 = 12 + 5 · 22 = (1 + 2
√
−5)(1− 2

√
−5)

are two essentially different factorizations of 21 in Z[
√
−5 ]. For quadratic number fields, Lagrange and

Gauß were able to overcome the difficulties caused by non-unique factorization through the introduction
of the class group of binary quadratic forms. The notion of a class field is not yet visible in their work,
although Gauß’ results on the genus class group can be interpreted as a theory of the genus class field;
in fact, his theorem on genus characters is really Artin’s reciprocity law for the genus class field of k.

1.1.2 Kummer and Dedekind: Ideals

The success of Gauß’ theory of binary quadratic forms led Eisenstein and Dirichlet to believe that the
language of forms was the correct one when it comes to describing the arithmetic of number fields. It
turned out, however, that it is much more convenient to use the language of ideals, which Dedekind
introduced to generalize Kummer’s concept of ideal numbers; these had been invented by Kummer to
compensate for the failure of unique factorization in cyclotomic number fields. In fact, using ideals, the
factorizations

21 = 3 · 7 = (1 + 2
√
−5)(1− 2

√
−5) = (4 +

√
−5)(4−

√
−5)

of elements in Ok = Z[
√
−5 ] (in general, Ok denotes the ring of algebraic integers in k) turns into a

single factorization of ideals

3 · 7Ok = (3, 1 + 2
√
−5)(3, 1− 2

√
−5)(7, 1 + 2

√
−5)(7, 1− 2

√
−5),

and the different factorizations of the elements come from different combinations of the ideal factors:

3Ok = (3, 1 + 2
√
−5)(3, 1− 2

√
−5),

(1 + 2
√
−5)Ok = (3, 1 + 2

√
−5)(7, 1 + 2

√
−5) etc.

Both Kummer and Dedekind tried to win over their contemporaries to the new language by showing
that the ideal numbers (and ideals) of some number field k become actual numbers (or principal ideals)
in certain finite extensions K/k. To see what they were doing let us look at the example k = Q(

√
−5 )

above. This field has class number 2, and the non-trivial ideal class is generated by the prime ideal
2 = (2, 1 +

√
−5). Euler’s conjecture (∗∗) has the following ideal theoretical explanation: an odd prime

p - disc k = −20 splits in k/Q if and only if (−20/p) = +1, i.e. iff p ≡ 1, 3, 7, 9 mod 20. Suppose that
p ≡ 3, 7 mod 20; then pOk = pp′ splits, and p cannot be principal, because p = (x+ y

√
−5 ) implies that

p = x2 + 5y2 ≡ x2 + y2 ≡ 1 mod 4. Similarly, the prime ideals above primes p ≡ 1, 9 mod 20 necessarily
generate principal ideals: otherwise these ideals would be in the same class as 2, hence 2p = (x+ y

√
−5 )

is principal, and then 2p = x2 + 5y2 ≡ 6 mod 8 yields the contradiction p ≡ 3 mod 4.
We have seen: if p is a prime, then pOk = pp′ if and only if p ≡ 1, 3, 7, 9 mod 20; moreover,

p is principal ⇐⇒ p ≡ 1 mod 4 ⇐⇒
(−1
p

)
= +1

2p is principal ⇐⇒ p ≡ 3 mod 4 ⇐⇒
(−1
p

)
= −1

Now suppose that K is a finite extension of k with the property that all ideals of k become principal
when lifted to K; then there is an α ∈ OK auch that 2OK = αOK , and taking the relative norm to
k we find 2(K:k) = (NK/kα). But the (K : k)-th power of 2 is principal if and only if (K : k) is even
(k has class number 2), therefore all such fields K must have even degree over k. There are a lot of
quadratic extensions K/k in which 2 becomes principal (actually, there are infinitely many): just take
any quadratic number field F with even discriminants such that 2OF = p2 for some principal ideal
p = αOF (for example, F = Q(

√
m ) with m = −2,−1, 2, 3, 7, 11, 14, . . .). Then K = kF is a number

field such that 2OK = α2OK = 22OK , and the theorem of unique factorization into prime ideals implies

2



that 2OK = αOK is indeed a principal ideal. This implies, by the way, that every ideal a of Ok becomes
principal in OK : if a is principal in Ok then there is nothing to show, otherwise a generates the same
ideal class as 2, i.e. there is a ξ ∈ k such that a = 2ξ, hence aOK = αξOK is also principal.

The fact that all ideals of k are becoming principal in K does of course not imply that K has class
number 1, because the ideals coming from k might split. In fact, if a quadratic extension K of k has
class number 1, then all the prime ideals p in the ideal class of 2 must stay inert: otherwise pOK = PP′,
and if P were principal in K, taking the norm would yield that p is principal in k. There is such an
extension: we have seen above that the prime ideals in the ideal class [2] are exactly those which stay
inert in k(

√
−1 )/k; in other words: the splitting of a prime ideal in the extension k(

√
−1 )/k depends

only on the ideal class to which it belongs. For this reason, it was called a class field by Hilbert.

1.1.3 Kummer and Weber: Kummer Theory

In his quest for higher reciprocity laws, Kummer studied cyclic `-extensions of the cyclotomic number
field Q(ζ`) and developed what we now know as Kummer theory; some refinements are due to Weber
who used these methods to prove that every abelian number field is subfield of some Q(ζm). For a more
modern presentation of Kummer theory we refer the reader to Chap. 3.

Throughout this section, we will make the following assumptions:

a) k/F is abelian with G = Gal (k/F ), and ζn ∈ k;

b) K = k( n
√
µ), and (K : k) = n; in particular, A = Gal (K/k) is cyclic of order n.

It is well known that k( n
√
µ ) = k( n

√
ν) if and only if µ = νaξn, where a ∈ N is prime to n, and ξ ∈ k×.

We begin by asking when K/F will be Galois:

Proposition 1.1.1. Let K/k/F be as above; then K/F is normal if and only if for every σ ∈ G there
exist ασ ∈ k and a(σ) ∈ N such that µσ−a(σ) = αmσ ; here a(σ) is unique mod n, and ασ is determined up
to an n-th root of unity.

Proof. If K/F is normal, then n
√
µσ ∈ K. This implies that k( n

√
µσ ) = k( n

√
µ), hence there exists an

a = a(σ) ∈ N and a ξ = ασ ∈ k× such that µσ = µa(σ)αnσ . The other direction will be proved below by
explicitly writing down the elements of the Galois group.

Proposition 1.1.2. Suppose that K/F is normal; then µσ−a(σ) = αnσ for every σ ∈ G. Define ω = n
√
µ.

Then every α ∈ K has a unique representation of the form α =
∑n−1
ν=0 aνω

ν , and the maps

σ̃j : L −→ L :
n−1∑
ν=0

aνω
ν 7−→

n−1∑
ν=0

aσν ζ
jνανσω

νa(σ), (0 ≤ j ≤ n− 1)

are pairwise different automorphisms of K/F whose restrictions to k coincide with σ.

Proof. The maps σ̃j , 0 ≤ j ≤ n−1, are pairwise different because they act differently on ω; in fact σ̃j(ω) =
ζjωa(σ). Moreover, their restriction to k coincides with σ because σ̃j(a0) = aσo . In order to prove that the
σ̃j are homomorphisms, it suffices to observe that σ̃j(ωn) = σ̃j(µ) = µa(σ)αnσ = (ωασ)n = σ̃j(ω)n.

Proposition 1.1.3. Suppose that K = Q( n
√
µ) with µσ = µaαmσ (this implies that K/F is normal) and

put τ = ĩd1; assume that ζσ = ζr, where σ generates G. Fix any extension of σ ∈ G to an automorphism
of K/F ; this extension will also be denoted by σ). Then σ−1τσ = τa

−1r, where a−1 denotes the inverse
of a modulo (K : k).

Proof. Put ρ = σ−1; then from µσ = ασµ
a we get, by applying τ and σ,

µaρ = µα−ρσ , µaρτ = ζµα−ρσ , µaρτσ = ζσµa = ζraa
−1
µa,

and this shows that µρτσ = ζra
−1
µ.
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An exact sequence E : 1 −−−−→ A −−−−→ Γ −−−−→ G −−−−→ 1 of finite groups is called an exten-
sion of G by A. E is called a central extension if A ⊆ Z(Γ) is contained in the center of Γ (where we
have identified A and its image in Γ). A normal tower K/k/F of fields is called central if the exact se-
quence 1 −−−−→ Gal (K/k) −−−−→ Gal (K/F ) −−−−→ Gal (k/F ) −−−−→ 1 corresponding to the tower
is central.

Corollary 1.1.4. Suppose that K = n
√
µ with µσ = µaαmσ (i.e. K/F is normal); then K/k/F is central

if and only if ζσ = ζa(σ) for every σ ∈ G.

Proof. K/k/F is central if and only if σ and τ commute, i.e. if and only if r = a.

Since central extensions of cyclic groups are abelian, we get

Corollary 1.1.5. Suppose that K/F is normal and that k/F is cyclic. Then K/F is abelian if and only
if ζσ = ζa(σ) for every σ ∈ G.

Another way to put this is by introducing Ω = k×/k× `: if ω ∈ Ω and ζσ = ζr for some σ generating
G = Gal (k/F ), then k(

√̀
ω)/k is abelian over F if and only if ωσ = ωr. It should be remarked that the

situation becomes quite complicated if k/F is not cyclic. The case of abelian k/F has been discussed by
Wojcik [533].

We will need the following lemma which was stated without proof by Furtwängler [378] for the
construction of unramified quaternion extensions:

Lemma 1.1.6. Let K/F be a quartic extension with Gal (K/F ) ' (2, 2); let σ, τ and στ denote its
nontrivial automorphisms, and put M = K(

√
µ ). Then M/F is normal if and only if µ1−ρ 2= 1 for all

ρ ∈ Gal (K/F ). If this is the case, write µ1−σ = α2
σ, µ

1−τ = α2
τ and µ1−στ = α2

στ . It is easy to see that
α1+ρ
ρ = ±1 for all ρ ∈ Gal (K/F ); define S(µ,K/F ) = (α1+σ

σ , α1+τ
τ , α1+στ

στ ) and identify vectors which
coincide upon permutation of their entries. Then

Gal (M/F ) '


(2, 2, 2) ⇐⇒ S(µ,K/F ) = (+1,+1,+1),
(2, 4) ⇐⇒ S(µ,K/F ) = (−1,−1,+1),
D4 ⇐⇒ S(µ,K/F ) = (−1,+1,+1),
H8 ⇐⇒ S(µ,K/F ) = (−1,−1,−1).

Moreover, M is cyclic over the fixed field of 〈ρ〉 if and only if α1+ρ
ρ = −1, and has type (2, 2) otherwise.

Proof. Let K/k be a quadratic extension and put M = K(
√
µ ) for some µ ∈ K. Let σ denote the

nontrivial automorphism of K/k. Then M/k is normal if and only if Mσ = M , and by Kummer Theory
this is equivalent to µσ 2= µ, i.e. to µ1−σ = α2

σ for some ασ ∈ K×. Since (α2
σ)

1+σ = µ(1−σ)(1+σ) = 1, we
see that ασ = ±1.

Next suppose that M/k is normal; then σ̃ : a + b
√
µ 7−→ aσ + bσασ

√
µ defines an automorphism of

M/k whose restriction to K/k coincides with σ. But now σ̃2 : a + b
√
µ 7−→ a + bα1+σ√µ, hence σ̃ has

order 4 if α1+σ = −1 and order 2 if α1+σ = +1.
Now clearly M/F will be normal if and only if µρ 2= µ for all ρ ∈ Gal (K/F ), i.e. if and only if M/ki

is normal for all three quadratic subextensions ki of K/k. Moreover, the noncyclic groups of order 8 can
be classified by their number of elements of order 4: this number is 0, 1, 2 or 3 if G ' (2, 2, 2), D4, (2, 4)
or H8, respectively. The claims of Lemma 1.1.6 now follow.

We also will need to know the behaviour of certain prime ideals in Kummer extensions of prime degree:

Proposition 1.1.7. Suppose that k contains the `th roots of unity, and let K = k(
√̀
ω) be a Kummer

extension of odd prime degree `. Let L denote a prime ideal above ` and define an integer a ∈ N by
La ‖ (1− ζ`). If ω is prime to `, then K/k is unramified at L if and only if ω ≡ ξ` mod La`.
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1.2 The Genesis of the Hilbert Class Field

1.2.1 Kronecker and Weber: Complex Multiplication

The first example of a Hilbert class field was given by Kronecker [1]. In fact, in his work on the theory
of complex multiplication he discovered that the quadratic number field k = Q(

√
−31 ) admitted a cyclic

cubic unramified extension K/k, whose defining equation (X3− 10X)2 +31(X2− 1)2 he computed using
analytic techniques. He noticed that prime ideals in Ok split in K/k if and only if they are principal,
and derived a reciprocity law from this observation (this is related to the singular numbers studied by
Hilbert and Furtwängler):

Proposition 1.2.1. Let k = Q(
√
−31 ), and let p be a prime ideal in Ok above a prime p which splits

in k/Q. Then p is principal if and only if the fundamental unit ε93 of K = Q(
√

93 ) is a cubic residue
modulo the prime ideal above p in OK .

Let H = {z ∈ C : =z > 0} denote the upper halfplane. For every τ ∈ H, define the lattice Λ = Λτ =
Z⊕ τZ in C. Next define the invariants

g2(Λτ ) = g2(τ) = 60
∑′
ω∈Λ ω

−4

g3(Λτ ) = g3(τ) = 140
∑′
ω∈Λ ω

−6

∆(Λτ ) = ∆(τ) = g2(τ)3 − 27g3(τ)2

j(Λτ ) = j(τ) = 1728 g2(τ)
3

∆(τ) .

Two lattices Λ and Λ′ are called homothetic if there is a λ ∈ C× such that Λ = λΛ′. Define SL2(Z) ={
A =

(
a b
c d

)
: detA = 1

}
and let γ =

(
a b
c d

)
∈ SL2(Z) act on H via γτ := aτ+b

cτ+d . The simplest

properties of the invariants g2, g3, ∆ and j are collected in

Proposition 1.2.2. a) ∆(Λ) 6= 0 for all lattices Λ in C;

b) two lattices Λ,Λ′ are homothetic if and only if j(Λ) = j(Λ′);

c) j(τ ′) = j(τ) if and only if there exists a γ ∈ SL2(Z) such that τ ′ = γτ ;

d) the holomorphic map j : H −→ C is surjective.

We say that a lattice Λ admits multiplication by α ∈ C if αΛ ⊆ Λ. Of course, every lattice admits
multiplication by Z. If Λ admits multiplication by α ∈ C\Z, then Λ is said to have complex multiplication.
It is easy to see that such α ∈ C \ Z are algebraic integers contained in some imaginary quadratic
number field. In particular, the ring of integers OK of an imaginary quadratic number field has complex
multiplication by OK . Now the big surprise is

Theorem 1.2.3. Write OK = Z + τZ for some τ ∈ OK ∩H; then j(τ) is an algebraic integer of degree
h(K) over K, and K(j(τ)) is the Hilbert class field of K.

For example, the values

j(i) = 123 j(
√
−2 ) = 203

j
(−1+

√
−3

2

)
= 0 j

(
1+
√
−7

2

)
= (−15)3

express the fact that the fields Q(
√
−m ) (m = −1,−2,−3,−7) have class number 1. For more on

Complex Multiplication and in particular on Kronecker’s Jugendtraum, the generalization of the theorem
of Kronecker and Weber to abelian extensions of imaginary quadratic fields, see Vladut [102] and Schertz
[104], as well as Cox [298] and Kedlaya’s thesis [643].

5



1.2.2 Hilbert: Hilbert Class Fields

Hilbert actually gave two different definitions of a class field. After the proof that unramified cyclic
extensions K/k of prime degree ` can only exist if the class number h(k) is divisible by ` (Satz 94 in
Hilbert’s Zahlbericht), he simply says that he will call such fields class fields. In his work on the quadratic
reciprocity law he came up with a more precise definition:

A finite extension K of a number field k is called a class field of k if exactly the principal
prime ideals of Ok split completely in K/k.

Hilbert’s work on the class fields (from now on called Hilbert class fields) of number fields with class
number 2 led him to the conjectures 1–4 and 6 below. These were proved by Furtwängler, together with
the Completeness theorem 5 which curiously is not mentioned in Hasse’s Klassenkörperbericht:

Theorem 1.2.4. Main Theorem of Hilbert Class Field Theory
Let k be a number field.

1. (Uniqueness) If k has a Hilbert class field then it is uniquely determined.

2. (Existence) The Hilbert class field k1 of k exists.

3. (Reciprocity Law) k1 is a finite normal extension of k, with Galois group Gal (k1/k) ' Cl(k).

4. (Decomposition Law) A prime ideal p in Ok splits into g prime ideals of inertia degree f , where
fg = (k1 : k) = h(k) and f is the order of [p] in Cl(k).

5. (Completeness) The Hilbert class field is the maximal abelian unramified extension of k.

6. (Principal Ideal Theorem) Every ideal in k becomes principal in k1.

1.2.3 Furtwängler: Singular Numbers

Let K be a number field containing the `-th roots of unity, and let e denote the `-rank of Cl(K). The
construction of the maximal elementary-abelian unramified `-extension K`/K is done as follows: choose
ideals a1, . . . , ae such that their ideal classes have order ` and generate a subgroup of order `e. Let
r = r1 + r2− 1 denote the Z-rank of EK and find generators EK = 〈ε0 = ζ`, ε1, . . . , εr〉 of the unit group.
For j = 1, . . . , e put εr+j = αj , where aj

` = αjOK . Now define the group E = 〈ε0, . . . , εr+e〉. There exist
ω1, . . . , ωe ∈ E such that K` = K(

√̀
ω1, . . . ,

√̀
ωe). These ωj are called singular numbers.

Let Kj = K( √̀ωj), and let Cj = NKj/KCl(Kj) be the ideal class group corresponding to Kj/K.
Then (Cl(K) : Cj) = `, and for ideals a prime to ` we have(

ωj
a

)
`

= 1 ⇐⇒ [a] ∈ Cj ,

where [a] denotes the ideal class of a; the class group Cj is said to belong to the singular number ωj , or
rather to the coset ωjK× `.

From a theoretical point of view, the arithmetic construction of K` is quite easy if the ground field
contains the `-th roots of unity: all one needs to know are generators of the unit group and the class
group of K. In fact it is sufficient to know generators of EK/E`K and `Cl(K), where `Cl(K) denotes the
subgroup of Cl(K) annihilated by `.

Now assume that K does not contain the `-th roots of unity. Of course we start by adjoining the
`-th roots of unity first, i.e. we put K ′ = K(ζ`); let σ be a generator of the cyclic group Gal (K ′/K),
and define r ∈ F×` by ζσ = ζr. Next choose a basis η0 = ζ`, η1, . . . , ηλ of EK′/E`K′ (this amounts to a
knowledge of an `-maximal unit group). Find generators b1, . . . , bf of `Cl(K ′) and set b`j = βjOK′ . Now
form the group

E = 〈η0, . . . , ηλ, β1, . . . , βf 〉K ′` ⊆ K ′×/K ′× `;

then every primary ω ∈ E gives rise to an unramified cyclic extension L′ = K ′(
√̀
ω) of K ′. If, in addition,

ωσ = ωr and ω 6= 1 (recall that ω is a coset of the form ω = αK ′× `), then L′ is abelian over K, and since
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L′/K ′ is unramified and ((K ′ : K), `) = 1, the abelian subextension L of L′/K with degree ` over K is
an unramified cyclic extension of degree ` over K.

What we have outlined above is the original naive approach of Furtwängler which was not meant to
be used for actually constructing the class field but for proving its existence. In Chapter 3 we will use
ideas of Herbrand, Leopoldt and G. Gras to show that there are more efficient methods for computing
Hilbert (or ray) class fields.

1.2.4 Takagi: Class Field Theory

The class field theory of Hilbert and Furtwängler was generalized by Takagi by allowing abelian extensions
to be ramified. Moreover, he defined the class field differently (we will only give the unramified part of
Takagi’s theory): Let K/k be a finite extension of number fields. Then HK/k = NK/kCl(K) is a subgroup
of Cl(k); call H the class group associated to K/k. Using analytic techniques dating back to Dirichlet, it
is not hard to show that (Cl(k) : HK/k) ≤ (K : k) (in fact, the inequality is strict if K/k is not normal).
Takagi called K a class field of k if (Cl(k) : HK/k) = (K : k). Now Takagi proved

Theorem 1.2.5. Takagi’s Main Theorem for Hilbert Class Fields
Let k be a number field.

1. For every subgroup H ≤ Cl(k), there exists a unique class field K such that H = HK/k;

2. K/k is abelian, and Gal (K/k) ' Cl(k)/H;

3. K/k is unramified;

4. If p is a prime ideal in Ok, and if f is the order of [p] in Cl(k)/H (i.e. the smallest integer ≥ 1
such that [p]f ∈ H) then p splits into g = (K : k)/f prime ideals in K;

5. Every unramified abelian extension K/k is a class field for some subgroup H ≤ Cl(k).

6. Let K/k be a finite extension, and let k1 denote the Hilbert class field of k, i.e. the class field for
the class group H = {1}. Then (Cl(k) : NK/kCl(K)) = (k1 ∩K : k).

If we put H = {1} in Takagi’s theory we get back Hilbert’s conjectures (minus the principal ideal
theorem); in fact, 4 shows that the prime ideals splitting completely in k1/k are exactly the principal
ones.

Takagi proved the isomorphism Gal (K/k) ' Cl(k)/H by reducing the problem to cyclic groups
and then counting their orders. It was Artin who found a canonical description: he defined a map(K/k

·
)

: Cl(k) −→ Gal (K/k) by letting
(K/k

p

)
be the Frobenius automorphism (where p is a prime ideal

in Ok), extending it multiplicatively to the group of fractional ideals in Ok, and defining
(K/k

c

)
:=
(K/k

a

)
,

where c = [a] (first, of course, he showed that
(K/k

a

)
does only depend on the ideal class of a).

Theorem 1.2.6. Artin’s Reciprocity Law
Let K/k be an unramified abelian extension. Then the Artin map induces a short exact sequence

1 −−−−→ H −−−−→ Cl(k) −−−−→ Gal (K/k) −−−−→ 1,

where the kernel H of the Artin map is

H = {c ∈ NK/kCl(K)} =
{
c ∈ Cl(k) :

(K/k
c

)
= 1
}
.
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1.2.5 From Hilbert to Hasse

In this section we will sketch the development of the theory of class field towers excluding results related
to the work of Golod and Shafarevich which will be discussed later. The need to study class field towers
originated with the only conjecture of Hilbert concerning the Hilbert class field which turned out to be
incorrect, namely the claim that the Hilbert class field of a number field with class number 4 has odd
class number.

In fact, Hilbert’s approach to proving the reciprocity law for fields with even class numbers was the
following:

1. establishing the quadratic reciprocity law in fields with odd class number;

2. proving it in fields with even class number by applying the reciprocity law in its Hilbert class field
which he conjectured implicitly to have odd class number.

It was Furtwängler [378] who realized in 1916 that the Hilbert 2-class field k1
(2) of a number field with

2-class group ' (2, 2) need not have an odd class number. He observed that Hilbert’s method to prove
the quadratic reciprocity law in k would still work if the 2-class field k2

(2) of k1
(2) had odd class number.

This made Furtwängler ask the following question: does the p-class field tower of a number field k always
terminate? Furtwängler proved that the answer is yes if Clp (k) is cyclic. He also thought he had shown
that the Hilbert p-class field tower terminates after the first step if k contains a p-th root of unity and
if Clp (k) ' (p, p). Wingberg [191] has shown, however, that there exist cyclotomic fields Q(ζp) with
Clp (k) ' (p, p) and infinite p-class field tower, contradicting Furtwängler’s claim.

Scholz [136] proved that there exist p-class field towers of length ≥ n for every n ∈ N. Nevertheless,
Furtwängler and Artin conjectured that the p-class field tower always terminates, and Artin suggested
that an improvement of the Minkowski bounds might lead to a proof; on the other hand the belief that the
”group theoretical method” would not lead to a solution was shared by at least Artin, Furtwängler and
Scholz (cf. Frei [437], Artin’s letter to Hasse (Aug. 19, 1927), and Taussky [403]). They all conjectured
that there is an infinite sequence Γn of finite p-groups with the property that Γn+1/Γ

(n)
n+1 ' Γn for each

n ≥ 1 (here Γ(n) denotes the n-th derived group). Already Magnus [483] gave an example of such a
sequence for Γ1 ' (3, 3, 3), and after Hobby [492] had made some progress, J. P. Serre [499] proved

Theorem 1.2.7. Let G be a finite p-group, and suppose that G is not cyclic and that G 6= (2, 2). Then
there exists an infinite sequence Γn of p-groups such that Γ1 ' G and Γn+1/Γ

(n)
n+1 ' Γn for all n ≥ 1.

Concerning the normality of class field towers, Hasse observed (as before, we only give the part relating
to unramified extensions):

Proposition 1.2.8. Let K/k be a normal extension with G = Gal (K/k), and let L be an unramified
abelian extension of K. Put C = NL/KCl(L); then L is

a) normal over k if and only if C = Cτ for every τ ∈ G;

b) central over K/k if and only if cτ−1 ∈ C for all c ∈ Cl(K) and all τ ∈ G.

Proof. The functoriality of the Artin isomorphism shows that Lτ is the class field of Kτ = K for Cτ ;
therefore Lτ = L if and only if Cτ = C.

For the second claim, let σ =
(L/K

c

)
; then τ−1στ =

(L/K
τ(c)

)
, hence σ is in the center of Gal (L/k) if

and only if cτ−1 lies in the kernel C of the Artin symbol.

Corollary 1.2.9. (Madden and Vélez [507]) Let L/K be an unramified abelian extension of degree
n = (L : K), and let k be a subfield of k such that (K : k) = 2. If the class number h of k and n are
relatively prime, then L/k is normal.

Proof. Put C = NL/KCl(L) and let c ∈ Cl(K); since (c1+τ )h = 1 ∈ C and since h is relatively prime to
the order n of the factor group Cl(K)/C, we conclude that already c1+τ ∈ C. Therefore, c ∈ C implies
cτ ∈ C, and Prop. 1.2.8a) proves our claim.
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The elementary properties of class field towers are collected in the following

Proposition 1.2.10. Let k be a number field.

1. k possesses a finite extension K/k with class number 1 if and only if (k∞ : k) is finite, i.e. iff the
class field tower terminates.

2. k possesses a finite extension K/k with p-class number 1 if and only if (k∞(p) : k) is finite, i.e. iff
the p-class field tower terminates.

3. If K/k is a finite normal extension, then so is K1/k.

4. kn/k is a finite normal extension for all n ∈ N.

5. If Clp (k) is cyclic, then the p-class field tower of k terminates at k1
(p).

6. If Cl2 (k) ' (2, 2), then the 2-class field tower of k terminates after at most two steps, i.e. k∞(2) = k1
(2)

or = k2
(2).

Properties (1) and (2) can be found in Holzer [139], (3) and (4) are simple consequences of the
maximality of the Hilbert class field, (5) and (6) were first proved by Furtwängler and Taussky.

1.3 Genus Class Fields

1.3.1 Quadratic Number Fields

The genus class field for quadratic number fields was introduced and studied in R. Fueter’s dissertation
[5] supervised by D. Hilbert. Let k = Q(

√
d ) be a quadratic number field with discriminant d; d is

called a prime discriminant if d is a prime power up to sign. The prime discriminants are −4, ±8, and
(−1)(p−1)/2p, where p is an odd prime.

Proposition 1.3.1. The discriminant d of a quadratic number field can be written uniquely (up to order)
as a product d = d1 · · · dt of prime discriminants dj.

The genus field (in the strict sense) k+
gen of k is defined to be the maximal extension contained in the

Hilbert class field (in the strict sense) which is abelian over Q. Fueter proved

Proposition 1.3.2. Let k = Q(
√
d ) be a quadratic number field with discriminant d; let d = d1 · · · dt be

its factorization into prime discriminants. Then

k+
gen = Q(

√
d1, . . . ,

√
dt ),

and Gal (k+
gen/k) ' Cl+(k)/Cl+(k)2; in particular, Cl+(k) has 2-rank equal to t−1, t being the number of

finite primes ramified in k/Q. A prime ideal p in k splits completely in k+
gen/k if and only if its ideal class

is contained in the principal genus Cl+(k)2. Moreover, all ambiguous ideal classes of k become principal
in k+

gen.

Similar results hold for the genus class field kgen in the usual sense, which is the maximal extension
of k which is unramified everywhere over k and abelian over Q. If d < 0 or d > 0 and all the factors
dj are positive, then kgen = k+

gen; if, however, d > 0 and some of the dj are negative, say d1, . . . , ds < 0
and ds+1, . . . , dt > 0, then kgen = Q(

√
d1d2, . . . ,

√
d1ds,

√
ds+1, . . . ,

√
dt ) = kgen ∩ R is the maximal

subextension of k+
gen/k which is unramified everywhere. Again it can be shown that

rank Cl2(K) =
{
t− 1, if all dj > 0,
t− 2, if some dj < 0.

The part of Prop. 1.3.2 about squares of ideal classes is called the Principal Genus Theorem for
quadratic number fields. Its generalizations in class field theory and its connections with Hasse’s norm
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theorem were studied by Herbrand [230], E. Noether [231], Terada [236, 238], Kuniyoshi and Takahashi
[239], Gold [258], and Gold and Madan [259].

Other references for the theory of genus class fields of quadratic number fields are Hasse [233],
Kubokawa [261], Gogia and Luthar [57], Zagier [280], Cox [298], and Spearman and Williams [301];
see also the surveys of Antropov [269] and Frei [271] on the historical development of genera.

1.3.2 Abelian Number Fields

Much of the genus theory of quadratic number fields generalizes to cyclic extensions K/Q of odd prime
degree `. In fact, let f be the conductor of K/Q; then f =

∏t
j=1 fj is the product of prime power

conductors fj , and the genus class field Kgen of K is the compositum of the cyclic extensions Q(fj)
of degree ` over Q and with conductor fi. In particular, Cl(K) has a subgroup of type (Z/`Z)t−1. In
contrast to the quadratic case, however, the `-rank of Cl(K) can be strictly larger than t − 1; in fact,
Moriya [308] and Leopoldt [237] have shown:

Proposition 1.3.3. Let K/Q be a cyclic extension of prime degree `, and assume that exactly t primes
ramify. Then

t− 1 ≤ r = rankCl`(K) ≤ (`− 1)(t− 1).

It is easy to see that the maximal unramified elementary abelian `-extension of K has degree `r over
K, and that (Kgen : K) = `t−1. Moreover it is known that rankCl`(K) = (`−1)(t−1) if Cl`(K) contains
an element of order `2, and this implies that the Hilbert `-class field of K coincides with its genus class
field if and only if Cl`(K) ' (Z/`Z)t−1 (cf. Li [94]).

For explicit constructions of genus class fields, see Ishida [256, 276, 278, 295], Bhaskaran [270, 288, 293],
and Xianke [289]; applications to the structure of ideal class groups were studied by Cornell [247, 263,
281, 285, 290].

1.3.3 General Number Fields

The construction of the genus class field of quadratic number fields k is almost trivial, because it amounts
to the factorization of disc k into prime discriminants. It was noticed by Goldstein [249] that this method
can be generalized from quadratic extensions k/Q to quadratic extensions k/F of number fields F with
class number 1 in the strict sense. To this end, let F be a field with class number 1 and observe that
Ok has an OF -basis {1, α}; then the relative discriminant disc (k/F ) = disc (1, α) is determined up to
squares of units. Such a discriminant is called a prime discriminant if disc (k/F ) is a power of a prime
ideal. Goldstein asked whether every discriminant disc (k/F ) can be written as a product of prime
discriminants. The answer given by him [249], Sunley [251, 275] and Davis [264] was

Theorem 1.3.4. Let F be a number field with class number h = 1; then the following assertions are
equivalent:

1. every discriminant d = disc (k/F ) is a product of prime discriminants;

2. F has class number h+ = 1 in the strict sense.

In this case, the factorization d = d1 · · · dt is unique up to order, and the genus class field k+
gen of k/F is

given by k+
gen = F (

√
d1, . . . ,

√
dt ).

Questions concerning the genus field of quadratic extensions of Q(i) (which are not covered by the
above theorem) were studied in Brandt [234] and Louboutin [299], the genus field of cyclic cubic extensions
of Q(

√
−3 ) was computed in Wada [246].

If k/F is an arbitrary finite extension of number fields, the genus field kgen of k is defined to be the
maximal field of type Kk such that K/F is abelian and Kk/k is unramified. The definition for normal
fields was first given by Scholz in [567]. Examples for such extensions can be given easily: let F/Q be an
extension of prime degree ` such that a prime p ≡ 1 mod ` is completely ramified. Then there exists a
subfield K ⊆ Q(ζp) of degree ` over Q, and it is easily checked (for example by using Abhyankar’s lemma)

10



that FK is contained in the genus field of F . This implies at once that the fields Q(
√̀
m), where m is

divisible by a prime p ≡ 1 mod `, have class number divisible by ` (see Honda [34]).
If K/k is abelian, there is a formula for the genus class number of K going back to Gauss, Hilbert,

and Furtwängler (see also Furuta [242]):

gK/k = (Kgen : K) = h(k) ·
∏∞

e(p)
(K : k)(E : H)

,

where
∏∞

e(p) is the product of the ramification indices of all primes p in k (including the primes at∞),
E is the unit group of Ok, and H is the subgroup of all units which are local norms at every completion
of K/k.

The formula (1) for the genus class number of an abelian extension K/k was generalized to normal
extensions by Furuta [242] and to arbitrary finite extensions of number fields by Taylor [252].

As an example of how to construct genus fields of general number fields, we present a result of Ishida
[256]:

Theorem 1.3.5. Let K = Q(α) be a cubic number field, and suppose that α is a root of x3+ax+b ∈ Z[x].
Assume moreover that there is no prime p such that p2 | a and p3 | b. Put

P1 = {p ≡ 1 mod 3 prime : p | a, p ‖ b},
P2 = {p ≡ 1 mod 3 prime : p2 | a, p2 ‖ b},

and define P = P1 ∪ P2 ∪ {3} if a ≡ 18 mod 27 and 32 ‖ b, or if a ≡ 6 mod 9 and b ≡ ±1 mod 9, and
P = P1 ∪ P2 otherwise. For p ∈ P , let k∗(p) denote the unique cubic subfield of Q(ζp2). Then the genus
class field of k is given by

kgen =
∏
p∈P

k∗(p).

1.3.4 Central Extensions

Recall that a tower L/K/k is called central if L/k is normal and if Gal (L/K) is contained in the center
of Gal (L/k); in particular, L/K must be abelian. Central extensions have been studied in connection
with some rather deep problems in algebraic number theory – here we will concentrate on the validity of
Hasse’s norm theorem.

Let k/F be a normal extension of number fields. Since k1/F is normal, we have a group extension

E : 1 −−−−→ Gal (k1/k) −−−−→ Gal (k1/F ) −−−−→ Gal (k/F ) −−−−→ 1.

Herz [24] claimed that the extension E always splits if F = Q. Wyman [504] gave a counterexample and
proved that E splits if k/Q is cyclic. In [506], Gold gave simpler proofs, and Cornell and Rosen [520]
showed that the equality kgen = kcen is necessary for E to split. For explicit examples of splitting and
non-splitting extensions see Bond [528].

The main reference for the rest of this section is Jehne [273]. Let k be a number field; embedding k×

into the idele group Jk gives rise to the exact sequence 1 −−−−→ k× −−−−→ Jk −−−−→ Ck −−−−→ 1,
where Ck is called the idele class group of k. The kernel of the canonical map Jk −→ Ik of the idele
group onto the group of fractional ideals is the unit idele group Uk, giving rise to another exact sequence
1 −−−−→ Uk −−−−→ Jk −−−−→ Ik −−−−→ 1. Finally there is the classical sequence

1 −−−−→ Hk −−−−→ Ik −−−−→ Clk −−−−→ 1

defining the ideal class group Clk as the factor group of the group Ik of fractional ideals modulo the
group Hk of principal ideals. All these exact sequences fit into a commutative diagram (the fundamental
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square)
1 1 1y y y

1 −−−−→ Ek −−−−→ k× −−−−→ Hk −−−−→ 1y y y
1 −−−−→ Uk −−−−→ Jk −−−−→ Ik −−−−→ 1y y y
1 −−−−→ Ek −−−−→ Ck −−−−→ Clk −−−−→ 1y y y

1 1 1
Now Jehne considers exact sequences

1 −−−−→ Ak −−−−→ Bk −−−−→ Ck −−−−→ 1 (1.1)

of certain abelian groups attached to number fields k (actually we will only consider the six exact sequences
contained in the fundamental square). For normal extensions K/k with Galois group G and relative norm
N = NK/k he applies the snake lemma to the diagram (ABC)

1 −−−−→ AK −−−−→ BK −−−−→ CK −−−−→ 1yN yN yN
1 −−−−→ Ak −−−−→ Bk −−−−→ Ck −−−−→ 1

and gets the exact sequence

1 −−−−→ NAK −−−−→ NBK −−−−→ NCK
δ−−−−→

Ak/NAK −−−−→ Bk/NBK −−−−→ Ck/NCK −−−−→ 1.

The connection homomorphism δ maps an element a = αAK ∈ NCK to δ(a) = NK/k(α)NK/kAK ;
since α is an element of BK whose relative norm lands in Ak, this is well defined. This shows that
imδ = Ak ∩ NK/kBK/NK/kAK =: [A,B]; Jehne calls [A,B] the knot associated to the sequence (1.1).
Now we split up the exact sequence at δ and get two short exact sequences involving the knot:

1 −−−−→ NAK −−−−→ NBK −−−−→ NCK −−−−→ [A,B] −−−−→ 1 (1.2)

1 −−−−→ [A,B] −−−−→ Ak/NAK −−−−→ Bk/NBK −−−−→ Ck/NCK −−−−→ 1. (1.3)

The exact sequences of the fundamental square thus give rise to six knots. But one of them is trivial:

Lemma 1.3.6. [U, J ] = 1.

Thus we are left with five different knots:

1. the number knot ν = νK/k = [K×, IK ] = k× ∩NJK/NK×;

2. the first unit knot ω = ωK/k = [EK ,K×] = Ek ∩NK×/NEK ;

3. the second unit knot ω′ = ω′K/k = [EK , UK ] = Ek ∩NUK/NEK ;

4. the ideal knot δ = δK/k = [HK , IK ] = Hk ∩NIK/NHK ;

5. the idele knot γ = γK/k = [EK , CK ] = Ek ∩NCK/NEK .
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The knots are functorial in the following sense: if we have two diagrams (ABC) and (A′B′C ′), then
we get a commutative diagram

1 −−−−→ NAK −−−−→ NBK −−−−→ NCK −−−−→ [A,B] −−−−→ 1y y y y
1 −−−−→ NA

′
K −−−−→ NB

′
K −−−−→ NC

′
K −−−−→ [A′, B′] −−−−→ 1

Applying (1.2) to the last two rows of the fundamental square (and keeping in mind that [U, J ] = 1)
we get an exact and commutative diagram

1 −−−−→ NUK −−−−→ NJK −−−−→ NIK −−−−→ 1y y y
1 −−−−→ NEK −−−−→ NCK −−−−→ NClK −−−−→ γ −−−−→ 1

(1.4)

Now we need the following version of the snake lemma (which can be proved by a simple diagram
chase):

Proposition 1.3.7. Given a commutative diagram

A
f−−−−→ B

g−−−−→ C −−−−→ 1

α

y β

y γ

y
1 −−−−→ A′

f ′−−−−→ B′
g′−−−−→ C ′

with exact rows, there exists an exact sequence

1 −−−−→ ker f −−−−→ kerα −−−−→ kerβ −−−−→ ker γ

δ

y
1 ←−−−− coker g′ ←−−−− coker γ ←−−−− cokerβ ←−−−− cokerα

Applying it to diagram (1.4) yields an exact sequence

1 −−−−→ NEK −−−−→ NK
× −−−−→ NHK −−−−→

ω′ −−−−→ ν −−−−→ δ −−−−→ γ −−−−→ 1,

and if we break up this sequence at ω′ we get

Theorem 1.3.8. The Fundamental Knot Sequence

1 −−−−→ ωK/k −−−−→ ω′K/k −−−−→ νK/k −−−−→ δK/k −−−−→ γK/k −−−−→ 1.

Now Scholz’s unit knot ω0 is the quotient ω′/ω ' Ek ∩NUK/Ek ∩NK×; defining yet another knot
δ0 := im (ν −→ δ), the fundamental knot sequence gives becomes

Theorem 1.3.9. Scholz’s Knot Sequence 1 −−−−→ ω0
K/k −−−−→ νK/k −−−−→ δ0K/k −−−−→ 1.

For cyclic extensions K/k, Hasse has shown that νK/k = 1, and Scholz introduced knots in order to
study the validity of Hasse’s norm theorem in non-cyclic extensions. The knots defined above can be
interpreted in terms of Galois groups of certain subfields in the Hilbert class field of K:

Theorem 1.3.10. We have δ0 ' Gal (Kcen/Kgen), δ ' Gal (Kcen/k
1K), and γ ' Gal (Kgen/k

1K).

The middle term of Scholz’s exact knot sequence can also be related to the Schur Multiplier M(G)
of the Galois group G = Gal (K/k). The Schur Multiplier of a finite group G is most easily defined as
follows: a group extension E : 1 −−−−→ A −−−−→ Γ −−−−→ G −−−−→ 1 is called central if A ⊆ Z(G);
E is called a covering if A ⊆ Γ′. Schur [563] has shown that the order of the groups A in central coverings
is bounded. Moreover, the groups A in any maximal central covering are mutually isomorphic. The
isomorphism class of A in a maximal central covering is called the Schur Multiplier of G, the groups Γ
are called covering groups of G.
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Example 1.3.1. G = (2, 2) has Schur Multiplier M(G) = Z/2Z; G has two non-isomorphic covering
groups, namely the dihedral group D4 and the quaternion group H8, both of order 8.

The structure of M(G) for abelian groups G is known since Schur [563]:

Proposition 1.3.11. Let G be an abelian p-group, and let C(pa) denote a cyclic group of order pa. Write
G = C(pn1)× . . .× C(pnm) in such a way that n1 ≥ n2 ≥ . . . ≥ nm. Then

M(G) ' C(pn2)× C(pn3)2 × . . .× C(pnm)m−1.

In particular, the p-rank of M(G) is
(
m
2

)
.

Since the Schur multiplier can be defined cohomologically by M(G) ' H2(G,Q/Z), we can now prove
the theorem of Scholz [564, 567] and Tate:

Theorem 1.3.12. Let K/k be a normal extension with Galois group G; then there is an exact sequence∐
P M(GP)̂ −−−−→ M(G)̂ −−−−→ νK/k −−−−→ 1, where GP denotes the Galois group of the exten-

sion KP/kp, and where KP and kp are the completions of K and k at the prime ideal P | p, respectively.
Moreover, Â= Hom (A,Q/Z) denotes the dual of an abelian group A.

Proof. For a prime p in Ok and a prime P in OK above p let kp and KP denote the completions of k
and K at these primes; moreover, put Gp = Gal (KP/kp). Consider the exact sequence

1 −−−−→ NK
× −−−−→ NJK −−−−→ NCK −−−−→ ν −−−−→ 1.

Then NCK = H−1(G,CK) and, by global class field theory, NJK = H−1(G, JK) '
∐

pH
−1(Gp,K

×
P).

Tate reciprocity shows that H−1(Gp,K
×
P) ' H−3(Gp,Z) and H−1(G,CK) ' H−3(G,Z). Moreover, the

duality theorem of the cohomology of finite groups H−q(G,Q/Z) ' Hq(G,Z)̂' Hq−1(G,Q/Z)̂ gives
H−3(G,Z) ' H2(G,Q/Z)̂ and H−3(Gp,Z) ' H2(Gp,Q/Z) .̂

Observe that it contains Hasse’s norm theorem as a corollary: the Schur multiplier of cyclic groups is
trivial, so we conclude that νK/k = 1.

Corollary 1.3.13. Let K/k be a finite unramified normal extension with Galois group G = Gal (K/k);
then νK/k 'M(G).

In fact, if K/k is unramified then so is KP/kp; but unramified extensions of local fields are cyclic,
hence M(GP) = 1 for all primes P.

We continue to assume that K/k is unramified; then every unit in Ek is a local norm, i.e. Ek∩NUK =
Ek, and we find ω0

K/k ' Ek/Ek ∩NK
×. Now Scholz’s knot sequence implies

Corollary 1.3.14. Let K/k be a finite unramified normal extension with Galois group G = Gal (K/k);
then there is an exact sequence

1 −−−−→ Ek/Ek ∩NK× −−−−→ M(G)̂ −−−−→ Gal (Kcen/Kgen) −−−−→ 1.

Remark 1. If we regard the exact sequences above not as exact sequences of Galois modules but of
abstract abelian groups, then we may replace M(G)̂ by M(G), since the dual of a finite abelian group is
(noncanonically) isomorphic to the group itself.

Cor. 1.3.14 is a very powerful result for showing that certain fields have nontrivial class numbers.
Consider e.g. an imaginary quadratic number field k such that Cl2 (k) = (2, 2, 2). Then the Hilbert 2-class
field k1 coincides with kgen, and G = Gal (kgen/k) ' (2, 2, 2); but M(G) ' (2, 2, 2), and Ek/Ek ∩NK×

is a factor group of Z/2Z (since the unit group Ek = {−1, 1}). Now Corollary 1.3.14 implies that
Gal (Kcen/Kgen) contains a subgroup of type (2, 2) (cf. Benjamin [189]).

Here is a related observation due to Iwasawa [408]:

Proposition 1.3.15. Let k be a number field whose p-class field tower terminates with K, and put
G = Gal (K/k); then Ek/NEK 'M(G).
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This has some interesting consequences: take, for example, an imaginary quadratic number field k
and assume that its 2-class field tower terminates with K. Then G = Gal (K/k) is a 2-group whose
Schur multiplier has order at most 2; this shows that there are many 2-groups which cannot occur as
Gal (k∞/k) for imaginary quadratic k. The question which groups can be realized as Gal (k∞/k) remains
open, because there are 2-groups whose Schur multipliers have order at most 2 and which do not occur
as Gal (k∞/k) for imaginary quadratic k.

As another application we give a result due to Bond [448]:

Corollary 1.3.16. Let k be a number field, and let r denote the p-rank of Ek/E
p
k . If the p-class field

tower of k is abelian, then rank Clp (k) ≤ 1+
√

1+8r
2 .

Proof. Assume that the p-class field tower terminates with K = k(1). Then by Prop. 1.3.15, M =
M(Gal (K/k)) ' Ek/NK/kEK . This implies that M has p-rank at most r. On the other hand, the p-rank
of M is just

(
s
2

)
by Prop. 1.3.11, where s denotes the p-rank of Clp(k).

Now s(s− 1)/2 ≤ r ⇐⇒ (2s− 1)2 ≤ 1 + 8r, and taking the square root yields our claim.

Proposition 1.3.17. If the p-class field tower of k terminates with K, then
Ek ∩NK/kK∗ = NK/kEK .

Proof. In this case Kcen = Kgen = K, hence Cor. 1.3.14 gives Ek/Ek ∩ NK× ' M(G). On the other
hand, Prop. 1.3.15 shows that Ek/NEK 'M(G). Our claim follows.

Finally, here’s a similar result due to D. Folk [465]:

Proposition 1.3.18. Let K/k be a normal extension and put L = K1; then NL/kL× ∩Ek ⊆ NK/kEK .

We also remark that Jehne has derived the following bound for the rank of p-class groups from his
knot sequences:

Proposition 1.3.19. Let K/k be a cyclic extension of prime degree p. Then

rank Clp (K/k) ≥ #Ram(K/k)− rankpEk/H − 1.

For a proof, observe that δ ' Gal (Kcen/k
1K); this implies of course that rankClp (K/k) ≥ rankpδ.

The exact sequence ν −→ δ −→ γ −→ 1 gives rankpδ ≥ rankpγ. The exact sequence

1 −−−−→ γ −−−−→ Ek/NEK −−−−→ H0(CK) −−−−→

shows that rankpγ ≥ rankpEk/NEK−rankpH0(CK). But H0(CK) ' Gab ' Z/pZ, hence rankpH0(CK) =
1. Finally, the exact sequence 1 −−−−→ Ek/Ek ∩NUK −−−−→ H0(UK) −−−−→ Ek/NEK −−−−→ 1 im-
plies rankpEk/NEK ≥ tK/k − rankpEk/Ek ∩NUK .

1.4 2-Class fields

1.4.1 Quadratic Number Fields

The first example of an unramified extension not contained in the genus class field is due to Hilbert
[2] himself: he considered the field K = Q(

√
2,
√
−7 ). This field has class number 2 and Hilbert class

field L = K(
√
µ ), µ = (

√
2 − 1)(

√
2 −
√
−7 ). This follows from µ being an ideal square satisfying

the congruence µ ≡
(
1 −
√

2 1−
√
−7

2

)2

mod 4. Since K is the genus class field of k = Q(
√
−14 ) and

Cl(k) ' C4, L also is the Hilbert class field of k.
The first structured approach to the construction of 2-class fields is due to Fueter [5] and was taken

up later in more detail by Rédei, Reichardt and Scholz in their papers [12], [15], [16], and [535]. Let k
be a quadratic number field with discriminant d; a factorization d = d1 · d2 of d into relatively prime
discriminants d1 and d2 will be called a C4-factorization if the primes dividing d1 split in Q(

√
d2 ) and

vice versa, i.e. if (d1/p2) = (d2/p1) = +1 for all primes pj | dj . An extension K/k is called a C4-extension
if K/k is normal with Gal (K/k) ' C4, the cyclic group of order 4. The following theorem summarizes
the work of Fueter, Rédei and Reichardt on the construction of unramified C4-extensions of quadratic
number fields (bear in mind that ‘unramified’ means ‘unramified outside ∞’):
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Theorem 1.4.1. Let k be a quadratic number field with discriminant d. There is a bijection between
unramified cyclic C4-extensions and C4-factorizations of d = disc k. In fact, if K/k is an unramified
C4-extension, then K/Q is normal with Gal (K/Q) ' D4. The quartic normal extension F/Q contained
in K can be written in the form F = Q(

√
d1,
√
d2 ). A careful examination of the decomposition and

inertia groups of the ramifying primes shows that (d1, d2) = 1 and that d = d1 · d2 is a C4-factorization.
Conversely, if d = d1 · d2 is a C4-factorization of d, then the diophantine equation X2− d1Y

2 = d2Z
2

has a nontrivial primitive solution (x, y, z), and the extension K = k(
√
d1,
√
µ ), where µ = x+ y

√
d1, is

a C4-extension of k unramified outside 2∞. By choosing the signs of x, y, z suitably one can make K/k
unramified outside ∞.

Example 1.4.1. Let k = Q(
√
−3 · 11 · 23 ) (cf. Daberkow [112]); then d = −11 ·69 is a C4-factorization,

and in fact Cl(k) ' (2, 4, 3). The genus class field is kgen = k(
√
−3,
√
−11 ), and the unramified cyclic

quartic extension K/k is constructed by solving x2 + 11y2 = 69z2; the solution x = 5, y = 2, z = 1 yields
K = k(

√
−11,

√
−5 + 2

√
−11 ).

The question of whether the cyclic quartic extension K/k constructed in Theorem 13.1. is real or not
was answered by Scholz [535]. Clearly this question is only interesting if both d1 and d2 are positive.
Moreover, if one of them, say d1, is divisible by a prime q ≡ 3 mod 4, then there always exists a real
cyclic quartic extension K/k: this is so because α = x + y

√
d1 as constructed above is either totally

positive or totally negative (since it has positive norm), hence either α � 0 or −qα � 0, so either
k(
√
α ) or k(

√
−qα ) is the desired extension. We may therefore assume that d is not divisible by a prime

q ≡ 3 mod 4, i.e. that d is the sum of two squares. Then Scholz [535] has shown

Proposition 1.4.2. Let k be a real quadratic number field with discriminant d, and suppose that d is
the sum of two squares. Assume moreover that d = d1 · d2 is a C4-factorization. Then the cyclic quartic
C4-extensions K/k containing Q(

√
d1,
√
d2 ) are real if and only if (d1/d2)4(d2/d1)4 = +1. Moreover, if

there exists an octic cyclic unramified extension L/k containing K, then (d1/d2)4 = (d2/d1)4.

If d1 and d2 are prime, we can say more ([535]):

Theorem 1.4.3. Let k = Q(
√
d ) be a real quadratic number field, and suppose that d = disc k = d1d2 is

the product of two positive prime discriminants d1, d2. Let h(k), h+(k) and ε denote the class number,
the class number in the strict sense, and the fundamental unit of Ok, respectively; moreover, let ε1 and
ε2 denote the fundamental units of k1 = Q(

√
d1 ) and k2 = Q(

√
d1 ). There are the following possibilities:

1. (d1/d2) = −1: then h(k) = h+(k) ≡ 2 mod 4, and Nε = −1.

2. (d1/d2) = +1: then (ε1/d2) = (ε2/d1) = (d1/d2)4(d2/d1)4, and 1.4.1 shows that there is a cyclic
quartic subfield K of k1 containing k1k2;

i) (d1/d2)4 = −(d2/d1)4: then h+(k) = 2 · h(k) ≡ 4 mod 8, Nε = +1, and K is totally complex;

ii) (d1/d2)4 = (d2/d1)4 = −1: then h+(k) = h(k) ≡ 4 mod 8, Nε = −1, and K is totally real.

iii) (d1/d2)4 = (d2/d1)4 = +1: then h+(k) ≡ 0 mod 8, and K is totally real.

Here (d1/d2)4 denotes the rational biquadratic residue symbol (multiplicative in both numerator
and denominator). Notice that (p/8)4 = +1 for primes p ≡ 1 mod 16 and (p/8)4 = −1 for primes
p ≡ 9 mod 16. Moreover, (ε1/p2) is the quadratic residue character of ε1 mod p (if p2 ≡ 1 mod 4),
where p is a prime ideal in k1 above p2; for d2 = 8 and d1 ≡ 1 mod 8, the symbol (ε1/8) is defined by
(ε1/8) = (−1)T/4, where ε1 = T + U

√
d1.

Corollary 1.4.4. Suppose that q = d2 ≡ 1 mod 4 is fixed; then

4|h+(k) ⇐⇒ (d1/d2) = 1 ⇐⇒ p ∈ Spl(Ω+
4 (d2)/Q)

4|h(k) ⇐⇒ (d1/d2)4 = (d2/d1)4 ⇐⇒ p ∈ Spl(Ω4(d2)/Q)
8|h+(k) ⇐⇒ (d1/d2)4 = (d2/d1)4 = 1 ⇐⇒ p ∈ Spl(Ω+

4 (d2)/Q)
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Here, the governing fields Ωj(d2) are defined by

Ω+
4 (d2) = Q(i,

√
d2 ), Ω4(d2) = Q(i,

√
d2,
√
ε2 ), Ω+

8 (d2) = Q(i, 4
√
d2,
√
ε2 ).

The reason for studying governing fields comes from the fact that sets of primes splitting in a normal
extension have Dirichlet densities. The existence of fields governing the property 8|h+(k) allows us to
conclude that there are infinitely many such fields. Governing fields for the property 8|h(k) or 16|h+(k)
are not known and conjectured not to exist. Nevertheless the primes d1 = p such that 8 | h(k) (or 16 | h(k)
etc.) appear to have exactly the Dirichlet density one would expect if the corresponding governing fields
existed. Governing fields were introduced by Cohn and Lagarias [536, 539] (see also Cohn’s book [83])
and studied by Morton [537, 538, 540, 543] and Stevenhagen [541, 542, 544]. A typical result is

Proposition 1.4.5. Let p ≡ 1 mod 4 and r ≡ 3 mod 4 be primes and consider the quadratic number field
k = Q(

√
−rp ). Then 8 | h(k) ⇐⇒ (−r/p)4 = +1.

Other articles on unramified cyclic quartic extensions of quadratic number fields are Herz [24],
Vaughan [86], and Williams and Liu [110].

Already Rédei [22] showed how to construct unramified cyclic 2-extensions of quadratic number fields
and gave a few examples of cyclic octic class fields; his paper was apparently unknown to Barrucand and
Cohn, who remarked in [38] that the explicit construction of the class field of Q(

√
−41 ) was probably

difficult. Cooke [45] constructed this class field, and his approach was generalized in Cohn and Cooke [48].
Other papers dealing with the construction of cyclic octic class fields are Kaplan [53] and Hettkamp [69]; a
few explicit examples can be found in Schoof [179], Lbekouri [93] and Cougnard [106]. The corresponding
problem for cyclic extensions of relative degree 16 was dealt with in Cohn [60, 66, 83] and Yamamoto
[82]; see also Cougnard [107]. Another discussion of Rédei’s construction was given in Zink’s dissertation
[162].

Quaternion extensions (these are normal extensions with Galois group H8, the quaternion group of
order 8, simply called H8-extensions in the sequel) have been studied ever since Dedekind [479] gave the
first example; embedding problems and construction of H8-extensions over Q and number fields of small
degree were studied in [481], [486], [487], [502], [516], [522], [524], [527], [530] [640], [642], [644].

Unramified extensions of quadratic number fields were studied by Furtwängler [378] and Hettkamp
[69]; Horie [96] has given the first examples of unramified H8-extensions, but only considered fields whose
2-class groups were of type (2, 2) or (2, 2, 2). The general problem of their existence and construction
was solved by Lemmermeyer [122] by proving the following result which is completely analogous to Thm.
1.4.1:

Theorem 1.4.6. Let k be a quadratic number field with discriminant d. Then the following assertions
are equivalent:

1. There exists an unramified H8-extension M/k such that M/Q is normal;

2. There is a factorization d = d1d2d3 of d into three discriminants which are relatively prime and
which satisfy the conditions (d1d2/p3) = (d2d3/p1) = (d3d1/p2) = +1 for all pi | di.

Moreover, if these conditions are satisfied, then there exists an odd squarefree a ∈ Z such that the
system

d1X
2
1 − d2X

2
2 = −ad3X

2
3 (I)

Y 2
1 − d1Y

2
2 = aY 2

3 (II)
Z2

1 − d2Z
2
2 = −aZ2

3 (III)

of diophantine equations has nontrivial solutions in Z. If xi, yi, zi ∈ Z form a solution, put

µ = (x1

√
d1 + x2

√
d2 )(y1 + y2

√
d1 )(z1 + z2

√
d2 )/r,

where r ∈ Z is an arbitrary nonzero integer. Then M = Q(
√
d1,
√
d2,
√
d3,
√
µ ) is an H8-extension of k

which is normal over Q with Gal (M/Q) ' D4 g C4. If we choose r ∈ Z in such a way that µ is integral
and not divisible by any rational prime p, then there is a 2-primary element in {±µ} if d1d2 ≡ 0, 1 mod 8,
and in {µ, 2µ} if d1d2 ≡ 4 mod 8.
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The question whether the quaternion extension constructed above is unramified at ∞ is answered by
the next proposition; if some prime q ≡ 3 mod 4 divides d, the same remarks as in the cyclic quartic case
apply.

Proposition 1.4.7. Let d1, d2, d3 be positive discriminants not divisible by a prime q ≡ 3 mod 4, and as-
sume that d = d1d2d3 is an H8-factorization. If M/k is a quaternion extension of k = Q(

√
d ) containing

Q(
√
d1,
√
d2,
√
d3 ) which is unramified outside ∞, then M is totally real if and only if(d1d2

d3

)
4

(d2d3

d1

)
4

(d3d1

d2

)
4

=
(d1

d2

)(d2

d3

)(d3

d1

)
.

In special cases, this goes back to Hettkamp [69]. See Table 1.1 for some examples.

Table 1.1:

d d1 d2 d3 µ Cl(k)
3848 8 13 37 (12

√
2 + 5

√
13 )(18− 5

√
13 ) (2, 2)

2120 5 8 53 (3
√

5 + 7
√

2 )(1 +
√

2 ) (2, 2)
1480 5 8 37 (3

√
5 + 2

√
2 )(2−

√
5 ) (2, 2)

520 5 8 13 (3
√

2 +
√

5 )(1 +
√

2 ) (2, 2)
−120 −3 5 8 (2

√
2 +
√

5 )(2 +
√

5 ) (2, 2)
−255 −3 5 17 (

√
5 + 2

√
−3 )(2 +

√
5 ) (2, 2, 3)

−420 −4 5 21 (4i−
√

5 )(2 +
√

5 ) (2, 2, 2)
−455 −7 5 13 (2

√
13− 3

√
5 )(2 +

√
5 ) (2, 2, 5)

−520 −8 5 13 (2
√
−2 +

√
5 )(2 +

√
5 ) (2, 2)

1.4.2 Cubic Number Fields

In his lectures on algebraic number theory [2], Hilbert also presented an unramified quadratic extension
of a cubic number field: Let α be the real root of the equation x3 +4x− 1 = 0; then K = Q(α) is a cubic
extension with discriminant d = −283 and class number 2. Its Hilbert class field is K1 = K(

√
α ): in

fact, since α > 0 and K has only one real embedding, no infinite prime can ramify. Moreover, α is a unit,
hence the only primes possibly ramifying are those dividing 2: but the congruence α3 = 1−4α ≡ 1 mod 4
shows that K(

√
α3 ) = K(

√
α ) is unramified at these primes, too.

This example was generalized in Rückle’s dissertation [3], where he studied cubic extensions generated
by roots of x3 − 4ax − 1 = 0. His methods also work for polynomials f(x) = x3 + 4ax − 1: for a ≥ 1,
f has discriminant −27 − 256a3 < 0; the real root α of f is positive (0 < α < 1), and if d is squarefree
then K = Q(α) is a cubic extension with discriminant d, and L = K(

√
α ) is an unramified quadratic

extension of K. It should be remarked, however, that neither Hilbert nor Rückle excluded the possibility
that α might be a square.

After Rückle there was a long silence, and it was Cohn’s introduction of the family of simplest
cubic fields which sparked the interest in unramified quadratic extensions of cyclic cubic fields. Cohn’s
family of cubic fields with even class numbers was explained by Shanks through the construction of the
corresponding 2-class fields. The papers of Uchida [42, 43], Watabe [76], Washington [90], Lan [92] and
Lemmermeyer and Pethö [116] all deal with 2-class fields of the same family. Washington’s article presents
connections of the 2-class fields with certain elliptic curves; see also Eisenbeis, Frey and Ommerborn [346],
Nakano [78], Kawachi and Nakano [363], U. Schneiders [368, 369, 374] and Schaefer’s paper [371], where he
constructs a noncyclic cubic field whose 2-class group has rank ≥ 13. General questions about connections
between elliptic curves and class groups are discussed in Billing [311], Brumer & Kramer [339], Buell [340],
Bölling [351], Satgé [354], Quer [355], Frey [358], Aoki [364], Soleng [366] abd Sato [373].

Ennola [98] constructed 2-class fields for a family of non-normal cubic fields, and Hwang [61] studied
2-class fields of pure cubic number fields. Similar problems were discussed by Bachoc and Kwon [527],
Jehanne [531], and Cassou-Nogues and Jehanne [534].
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1.4.3 General Number Fields

2-class fields of general number fields have been constructed in order to show that there are infinitely
many number fields of a given degree whose 2-class groups have ‘large’ rank. We simply note the following
references: Ishida [35, 46], and Ichimura [70].

Another motivation for the construction of 2-class fields and genus class fields was the desire to prove
reciprocity laws, as for example in Skolem [229], Brandt [234, 235], Halter-Koch [87], and Louboutin
[299].

1.5 3-Class Fields

1.5.1 Quadratic Number Fields

Of course it was Kronecker and Weber who first constructed unramified cubic extensions of quadratic
number fields (using analytic techniques from complex multiplication); the arithmetic construction of such
extensions however was studied in the dissertations of Sapolsky [4] and Fueter [5], both supervised by
Hilbert. Essentially the same approach was taken in the papers of Herz [24], G. Gras [31, 37], Barrucand
[44], Vaughan [81], and Nakahara [97]; see also Gut [20], Honda [27], Uchida [32], Neumann [41], and
Williams and Hudson [103]. The following explicit theorem can be found in Herz [24]:

Theorem 1.5.1. Let k = Q(
√
−3d ) be an imaginary quadratic number field and put k̃ = Q(

√
d ), where

d = disc k̃. Let ε = 1
2 (e + f

√
d ) be the fundamental unit of k̃, and let a = Nε and e = Tr ε denote its

norm and trace, respectively. Then 3 | h(k) if and only if one of the following assertions holds:

i) a = +1, e ≡ ±2 mod 27;

ii) a = −1, e ≡ ±4 mod 9;

iii) e ≡ 0 mod 9;

iv) 3 | h(k̃).

In cases i) – iii), the corresponding 3-class field is given by k(θ), where θ = 3
√
ε + 3
√
ε′ is a root of the

polynomial x3 − 3ax− e.

Proof. We will show that

1. if a unit satisfying i), ii) or iii) exists, then k(θ)/k is an unramified cyclic cubic extension;

2. if 3 | h(k) and 3 - h(k̃) then there exists a unit satisfying i), ii) or iii);

the implication 3 | h(k̃) =⇒ 3 | h(k) is part of Scholz’s reflection theorem (Prop. 1.9.34).
From our construction of the Hilbert class field in Section 1.2.3 we deduce the following fact: if 3 | h(k)

and 3 - h(k̃), then the 3-class field of k is a cubic subextension of K = k′( 3
√
η), where η is a unit in OK .

Since 〈ε〉 is an `-maximal unit group of OK for every ` > 2, we can take η = ε. Our claim will follow if
we can prove that such a unit ε is primary if and only if one of the conditions i), ii) or iii) is satisfied.

The condition ε ≡ ξ3 mod (3
√
−3 ) in OK is equivalent to (put O = Oek)

a) ε ≡ ξ3 mod p3 if d ≡ 0 mod 3, where 3O = p2;

b) ε ≡ ξ3 mod p2
j (j = 1, 2) if d ≡ 1 mod 3, where 3O = p1p2;

c) ε ≡ ξ3 mod 9 if d ≡ 2 mod 3.

Now we look at each case separately:

a) Consider the homomorphism Φ : (O/p3)× −→ (O/p3)× : ξ 7−→ ξ3; since #(O/p3)× = 18 and
# ker Φ = 9 (note that ker Φ = 〈4, 1 +

√
d mod p3〉), we conclude that ε ≡ ξ3 mod p3 if and only

if ε ≡ ±1 mod p3. This implies at once that 3 | f , and now e2 ≡ 4a mod 27 shows a = +1 and
e ≡ ±2 mod 27. On the other hand, a = 1 and e ≡ ±2 mod 27 imply 3 | f and ε ≡ ±1 mod p3.
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b) Since #(O/p2)× = 6 and # kerΦ = 3 we know that ε ≡ ξ3 mod p2
j if and only if ε ≡ ±1 mod p2

j .
Now ε ≡ ±1 mod p2

1 and ε ≡ ±1 mod p2
2 imply ε ≡ ±1 mod 9 (i.e. f ≡ 0 mod 9), and then e2−4a =

df2 ≡ 0 mod 27 give a = 1 and e ≡ ±2 mod 27, whereas ε ≡ ±1 mod p2
1 and ε ≡ ∓1 mod p2

2 yield
e ≡ 0 mod 9 (and a = −1). The other direction is easy to verify.

c) Here #(O/9)× = 8 ·9 and # kerΦ = 9 show that ε ≡ ξ3 mod 9 if and only if ε ≡ ±1, ±d
√
d, ±(1+

3d) ± (d + 3)
√
d mod 9. A few simple computations reveal that ε ≡ ±1 mod 9 ⇐⇒ 9 | f ⇐⇒

a = 1 and e ≡ ±2 mod 27; similarly ε ≡ ±d
√
d mod 9 leads to e ≡ 0 mod 9, and finally ε ≡

±(1+3d)± (d+3)
√
d mod 9 implies ±e = 2(1+3d) ≡ −4 mod 9 and a = 1

4 (e2− df2) ≡ −1 mod 9.
Again, the other direction is easily verified.

Example 1.5.1. All the cases in Theorem 1.5.1 do actually occur, as the following examples show:

a d mod 3 d ε

+ 1 0 69 1
2 (25 + 3

√
69 )

+ 1 1 253 1
2 (1861 + 117

√
253 )

+ 1 2 83 82 + 9
√

83
+ 1 2 77 1

2 (9 +
√

77 )
− 1 1 85 1

2 (9 +
√

85 )
− 1 2 29 1

2 (5 +
√

29 )

As another illustration, we construct a family of unramified cyclic cubic extensions of quadratic
number fields. We start with the following proposition, which can be proved by the method discussed by
Lemmermeyer and Pethö [116]:

Proposition 1.5.2. Let m,n, t be natural numbers such that m = t2 − 2 and t ≥ 12; if the diophantine
equation N(ξ) = |x2−my2| = n has solutions ξ = a+b

√
m ∈ Z[

√
m ], then one of the following assertions

holds:

a) ξ = rη for some r ∈ Z and a unit ε ∈ Z[
√
m ], and r2 = n;

b) ξ = rηε for some r ∈ Z, η = t+
√
m, and some unit ε ∈ Z[

√
m ], and 2r2 = n;

c) n = 2t± 3, 4t− 9, 4t− 6, and ξ is associated to one of the following elements:

{t± 1±
√
m, t± 2±

√
m, 2t− 1± 2

√
m, 2t± 2± 2

√
m};

d) n ≥ 4t+ 6.

This result allows us to construct quadratic number fields K = Q(
√
m ) with class number divisible by

3; for suppose that m = t2− 2 is squarefree, and that 4t− 9 = b3 for some b ≥ 3. Then α = 2t− 1+2
√
m

has norm b3, hence αOK = a3 for some ideal a in Z[
√
m ]. If a were principal, it would have norm b;

but b < 2t − 1, hence Prop. 1.5.2 implies that b is a square and that a is generated by an integer. This
contradiction shows that a is not principal, hence h(K) ≡ 0 mod 3. We cannot expect to be able to
construct the corresponding unramified cyclic cubic extension of K from these data (this is Leopoldt’s
Spiegelungssatz at work – see Chapter 2); in fact we will construct such extensions over L = Q(

√
−3m ).

Suppose first that b ≡ 0 mod 3; then t ≡ 0 mod 9 and m ≡ 2 mod 3, hence ε = t2 − 1 + t
√
m ≡ −1 ≡

(−1)3 mod 27. From the proof of part a) of Theorem 1.5.1 we deduce that M( 3
√
ε) is an unramified cyclic

cubic extension of M = K(
√
−3 ).

Next consider the case b ≡ ±1 mod 3; then t ≡ ±2 mod 9 and m ≡ 2 mod 9, and we find

α = 2t− 1 + 2
√
m ≡

{
4 + 2

√
m mod 9, if b ≡ 1 mod 3

3 + 2
√
m mod 9, if b ≡ 2 mod 3

ε = t2 − 1 + t
√
m ≡

{
3− 2

√
m mod 9, if b ≡ 1 mod 3

3 + 2
√
m mod 9, if b ≡ 2 mod 3
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Let ε′ = t2 − 1 − t
√
m denote the conjugate of ε; then we find that αε′ ≡ (−1 +

√
m)3 mod 9 if

b ≡ 1 mod 3, and αε′ ≡ 1 mod 9 if b ≡ 2 mod 3. Therefore the polynomials Pt below generate unramified
cubic extensions of Q(

√
−3m ), m = t2 − 2, whenever m is squarefree:

Pt(x) = x3 − 3x+ 2(1− t2), where t = (b3 + 9)/4 and b ≡ 3 mod 6,
Pt(x) = x3 + 3bx− 2(1 + 2t− t2), where t = (b3 + 9)/4 and b ≡ 7, 11 mod 12.

An interesting example is provided by b = 55, t = 41596, where the cubic extension has class group (3, 3);
by a result of Callahan (Prop. 1.9.36) this implies that the imaginary quadratic field has a 3-class group
of rank 3. Similar families can of course be constructed by replacing 4t−9 by other norms such as 2t±3,
etc.

Let k be a quadratic number field with discriminant d and 3-rank r; Hasse [10] has shown that
there exist 1

2 (3r − 1) non-conjugate cubic number fields K with discriminant d such that Kk/k is an
unramified cyclic cubic extension. Shanks [51] computed generating polynomials of these cubic fields for
disc k = −4027 (r = 2) and disc k = 44 806 173 (r = 3). Diaz y Diaz, Llorente and Quer [91] did the same
for k = Q(

√
314 582 172 161 ), where Cl(k) ' (2, 3, 3, 3, 3).

As already Kummer had shown, the diophantine equation Xp + Y p = Zp has no solution in integers
6= 0 if the class number of Q(ζp) is not divisible by p. Fueter looked at such problems from a different
angle: he showed [7] that if X3 + Y 3 = Z3 has nontrivial solutions in certain quadratic number fields
k, then these solutions can be used to construct unramified cyclic cubic extensions of k. This subject
was also dealt with in papers of Aigner [21], Mirimanoff [17], and Therond [75]. In [9], Fueter studied
solutions of the Bachet-Mordell equation y2 = x3 − m and showed that the class number of Q(

√
m ),

where m = x3 − y2, m ≡ 7 mod 9, m 6= 3 mod 4, and m 6= −4 mod 16 is ≡ 0 mod 3 by constructing
the corresponding unramified cyclic cubic extension of k. This connection between 3-ranks of quadratic
number fields and points on certain elliptic curves was also discussed in Bölling [333]. For the construction
of the cyclic unramified extension of degree 9 over Q(

√
1129 ) see Kerkour [58].

1.5.2 Cubic Fields

The 3-class fields of cyclic cubic extensions of Q have been studied by A. Scholz in several papers. In
particular, he studied the following case: let p ≡ 1 mod 3 be prime, and let kp denote the cubic subfield
of Q(ζp). If q is another prime ≡ 1 mod 3 (or q = 9, k9 being the cyclic cubic field with discriminant
81), then K = kpkq contains four subfields, namely kp, kq, and two fields kpq and k′pq of conductor pq.
It is easy to see that K/kpq is an unramified cyclic cubic extension, hence K is the 3-class field of kpq if
Cl3(kpq) ' Z/3Z. Now Scholz (see also Inaba [312], Martinet [250], and Gras [323]) proved

Proposition 1.5.3. h3(kpq) ≡ 0 mod 9 ⇐⇒ (p/q)3 = (q/p)3 = 1, i.e. if p and q are cubic residues of
each other.

Actually, Scholz proved much more, but his paper is hard to understand. His results are related to
those of Gillard [322] and Naito [88, 183].

In his dissertation [28], Bauer studied the explicit construction of 3-class fields of cyclic cubic number
fields, but could not give an example going beyond the genus class field. He improved Leopoldt’s bound
t− 1 ≤ rank Cl3(k) ≤ 2(t− 1) by showing that in fact rankCl3(k) = 2(t− 1)− r (he also gave a similar
expression for the 3-rank of Cl(L), L = k(

√
−3 )) where r ≤ t − 1 is the rank of a certain matrix whose

entries are cubic Hilbert symbols. He also showed that an unramified cyclic cubic extension K/k is normal
over Q if and only if K is contained in the genus class field kgen of k/Q.

Quite recently the Stark Conjectures (see e.g. the papers of Stark [595, 596, 597, 598, 599, 600] for
the development of these conjectures, or Tate’s book [605]; other references are Chinburg [602], Sands
[603, 604, 606], Hayes [607], Wiles [608], Wang [609], Rubin [610, 612], or Hayes [614]) have been used
for computing the 3-class fields of certain cubic number fields; see e.g. the articles of Dummit and Hayes
[121], Dummit, Sands, and Tangedal [613], or [611].

Consider the family of cubic fields Ku generated by a root α of the polynomial fu(x) = x3+(u+1)x2−
(u+2)x−1 (cf. Buell and Ennola [111]). If d = disc f = u4+14u3+67u2+126u+49 = (u2+7u+9)2−32 is
squarefree, then Ku is an unramified cyclic cubic extension of ku = Q(

√
d ). Using the method described

in [116] it is easy to show that the minimal nontrivial norm in the order Z[α] is 2u+ 1.
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Assume therefore that d is squarefree and 2u+ 1 = b3; then Ku has class number divisible by 3, and
Callahan’s result (Prop. 1.9.36) shows that Cl3(ku) has rank ≥ 2. The same thing works of course if
2u+7 = b3; in this case, the value b = 193 provides us with a real quadratic number field of discriminant
d = 166 943 369 675 256 545 872 751 089 and a 3-class group of rank 5.

1.6 `-Class Fields

1.6.1 Quadratic Number Fields

For primes ` > 3, the arithmetic construction of `-class fields of quadratic number fields started with
the papers of Hasse [26] and of Hasse and Liang [29], who constructed the Hilbert class field of K =
Q(
√
−47 ) (K has class number 5) and compared its generating polynomial to the one given by Weber

using the theory of complex multiplication. Later G. Gras [31, 37] developed the general theory of such
constructions, building on the work of Kummer, Hasse, Payan and Martinet. Just as in the Rédei-
Reichardt theory, the construction of the `-class field of a number field k can be simplified if k is assumed
to be a normal extension of another number field F (in the simplest cases, k/Q is a quadratic number
field). Parry [54] found the following result corresponding to Theorem 1.5.1:

Theorem 1.6.1. Let m > 0 be a squarefree integer, and put α = − 1
2 (5 +

√
5 ). Then K = Q(

√
5,
√
m ),

k̃ = Q(
√

5,
√
αm ) and Q′ = Q(α) = Q(ζ5) are the three quartic subfields of Q(

√
m, ζ5). Let H and h̃

denote the class number of K and k̃, and let εm = 1
2 (a + b

√
m ) and ε5m = 1

2 (c + d
√

5m ) denote the
fundamental units of Q(

√
m ) and Q(

√
5m ), respectively. Then 5 | h̃ if and only if one of the following

conditions holds:

i) ab ≡ 0 mod 25;

ii) m ≡ ±2 mod 5 and Trε5m ≡ ±1, ±7 mod 25;

iii) d ≡ 0 mod 5;

iv) 5 | H.

Gut [23, 40] developed an interesting idea for constructing unramified cyclic `-extensions of certain
number fields k, which was taken up again in articles of Satgé and Barrucand [50] and Satgé [55, 64, 65].
In the special case ` = 5, these constructions explain numerical results discovered by Parry [54, 59].

Families of unramified cyclic extensions of degree 5 and 7 over quadratic number fields have been
constructed by Mestre [63, 71] using the theory of elliptic curves. A very beautiful family of dihedral
quintic extensions whose normal closure is unramified over its quadratic subfield is discussed in Kondo’s
paper [125]; see also Sasajima’s dissertation [124].

1.6.2 Cyclic Number Fields

The results of the previous section can be generalized to cyclic fields, and, in particular, to cyclotomic
number fields. Much work on the construction of `-class fields of Q(ζ`) has been carried out by Pollaczek
[8], Herbrand [11], Ribet [47, 49] and Wiles [68]; details will be presented in Chap. ??, after we will
have refined Furtwängler’s construction of class fields. See also Hasse [13], Morishima [14], Nakagoshi
[79, 95, 99, 100], Odai [89], and Gurak [105]

1.7 Separants

Separants were introduced by Lemmermeyer [115] in order to generalize the results of Goldstein, Sunley
and Davis (see Thm. 1.3.4) to totally real fields of odd class number in the strict sense.

In fact, assume that F is a number field with odd class number h, and let k = F (
√
µ ) be a quadratic

extension. The relative discriminant d = disc (k/F ) is an integral ideal in OF , and it is easy to see that
(4µ) = (disc (

√
µ )) = a2d, for an integral ideal a in OF . Since dh = (δ) and ah = (α) are principal in
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F , we have (4µ)h = (α2δ), and we can choose δ ∈ OF in such a way that we have µ = ξ2δ for some
ξ ∈ F . Obviously, δ is unique up to squares of units in OF , i.e. another choice of µ leads to a δ1 ∈ F
such that δ = δ1ε

2. The residue class d = δ mod E2
F is called the separant of the quadratic extension,

and we will write d = sep(k/F ). Note that expressions like F (
√
d ) or (d/p) (Legendre-symbol) etc. make

perfect sense, because they do not depend on the choice of a representative. Moreover, we always have
k = F (

√
d ), hence the separant does indeed characterize quadratic extensions.

Let u be an infinite prime in F ; u is called ramified in F/k if u is real and its extension in F is
complex. We will write u - d if d ≡ 1 mod u, or more exactly, if a representative δ of d is positive at u
(since representatives differ at most by squares, this is well defined). We will call two separants d1, d2

relatively prime (and write (d1, d2)|∞) if there is no finite prime p dividing both d1 and d2; we will call
them relatively prime at ∞ if there is no infinite prime dividing both d1 and d2. If two separants are
relatively prime both at the finite and infinite primes, we will write (d1, d2) = 1.

For fields with class number 1, separants and Goldstein’s generalized discriminants are essentially
the same. The introduction of separants is justified by the fact that Thm. 1.3.4 as well as the whole
Rédei-Reichardt theory (Thm. 1.4.1 in particular, but also the whole discussion on the construction of
cyclic unramified 2-extensions and governing fields) generalizes if only F has odd class number in the
strict sense:

Theorem 1.7.1. Let F be a number field with odd class number, k/F a quadratic extension, and L/k
an unramified C4-extension. Then

i) L/F is normal with Galois group Gal (L/F ) ' D4, and L/k is the cyclic quartic extension in L/F ;

ii) there exists a ”C4-factorization” d = sep(k/F ) = d1 · d2 of d into separants d1, d2 such that

a) (d1, d2) = 1;

b) (d1/p2) = (d2/p1) = +1 for all prime ideals p1 | d1 and p2 | d2.

On the other hand, if d = d1 · d2 is a C4-factorization, let δj be a representative of dj , j = 1, 2; then
the diophantine equation

X2 − δ1Y 2 − δ2Z2 = 0 (1.5)

is solvable in OF . For any solution (x, y, z) ∈ O3
F of (1.5), put µ = x + y

√
δ1 and ν = 2(x − z

√
δ2);

then L = k(
√
d1,
√
µ ) = k(

√
d2,
√
ν ) is a cyclic quartic extension of k, which is unramified outside 2∞;

moreover, L/F is normal and Gal (L/F ) ' D4.
If F is totally real and has odd class number in the strict sense, we can choose the solutions to (1.5)

in such a way that L/k becomes unramified at all finite primes.

An explanation of why this works exactly for totally real fields with odd class number in the strict
sense was provided by the introduction of the separant class group SCl(F ) in [300]; we will give a new
approach to SCl(F ) in Chapter 3.

1.8 Capitulation of Ideal Classes

There are three excellent surveys on the capitulation of ideal classes: Adachi [426], Jaulent [450], and
Miyake [452].

1.8.1 Hilbert’s Theorem 94

Let k be a number field and let a be an ideal in Ok; then a is said to capitulate in an extension K/k if
aOK = αOK for some α ∈ OK , i.e. if a becomes principal. It is easy to see that the capitulation of a only
depends on its ideal class. Already Kronecker noticed connections between unramified abelian extensions
of number fields and the capitulation of ideal classes, and in his Zahlbericht, Hilbert proved

Theorem 1.8.1. Let K/k be a cyclic unramified extension of prime degree `. Then there is a non-
principal ideal a in k which capitulates in K. In particular, the class number of k is divisible by `.
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The last remark stems from the rather obvious observation that ideal classes capitulating in K/k must
have order dividing (K : k). The generalization of Hilbert’s Theorem 94 to cyclic extensions of prime
power degree presented no problem. In contrast to other theorems in class field theory, however, no one
saw how to reduce the (conjectured) principal ideal theorem to cyclic extensions. It is not hard to show
(see Furtwängler [378]) that Theorem 94 also holds for unramified extensions with Galois group ' (`a, `),
but this seems to be all that can be achieved by using the (essentially cohomological) direct approach
used by Hilbert.

In the following, let κK/k denote the kernel of the conorm of K/k, i.e. the subgroup of Cl(k) ca-
pitulating in K. A standard cohomological argument ([420]) shows readily that, for cyclic unramified
extensions K/k of prime power degree, we have #κK/k = (K : k)(Ek : NK/kEK), where Ek denotes
the unit group of Ok.

In the first attack on the capitulation problem after Hilbert, Furtwängler [378] used ”Hilbert’s Theorem
90 for ideal classes”, which he had proved earlier in his work on Hilbert class fields:

Theorem 1.8.2. Let K/k be a cyclic unramified extension such that Gal (K/k) = 〈σ〉, and let c ∈ Cl(K).
Then NK/kc = 1 if and only if there is a C ∈ Cl(K) such that c = C1−σ.

This theorem fails to hold if one replaces the norm NK/k by the ‘algebraic norm’ ν = 1 + σ + . . . +
σ(K:k)−1; in fact, let νC = {c ∈ Cl(K) : cν = 1} be the subgroup of Cl(K) annihilated by ν (this means
that taking the norm to k of c ∈ νC and lifting it back to K yields the trivial ideal class). Hilbert’s
Theorem 90 in the strong sense would assert that νC = C1−σ, but this is not true in general (cf. Kisilevsky
[423]):

Corollary 1.8.3. If K/k is a cyclic unramified extension, then (νC : C1−σ) = #κK/k ∩NK/kCl(K).

Proof. This follows at once from Theorem 1.8.2 and the exactness of the sequence

1 −−−−→ NC −−−−→ νC
NK/k−−−−→ κK/k ∩NK/kCl(K) −−−−→ 1

which is an immediate consequence of the definitions of the groups involved.

O. Taussky [424] called unramified cyclic `-extensions K/k ‘of type B’ if κK/k ∩NK/kCl(K) = 1, and
of type A otherwise.

1.8.2 Artin’s Reduction

Let K/k be an unramified abelian extension; let k1 and K1 denote the Hilbert class field of k and K,
respectively (the following results continue to hold if one replaces Hilbert class fields by p-class fields).
Put L = k2 (the Hilbert class field of k1), G = Gal (k2/k), and let H ≤ G be the subgroup corresponding
to K. Then G/G′ ' Gal (k1/k) and H/H ′ ' Gal(K2/K); the Artin isomorphism shows G/G′ ' Cl(k)
and H/H ′ ' Cl(K). Let j = jk→K denote the conorm of K/k, i.e. the transfer of ideal classes. Artin
proved

Proposition 1.8.4. There exists a group homomorphism Ver : G/G′ −→ H/H ′ such that the following
diagram commutes:

Cl(k)
j−−−−→ Cl(K)(

L/k
·

)y y(L/K
·

)
G/G′

Ver−−−−→ H/H ′

This diagram allows us to study the capitulation kernel κK/k = ker j by computing the kernel of the
map Ver : G/G′ −→ H/H ′, which is defined (for groups H ⊆ G such that the index n = (G : H) is
finite) as follows: let G =

⋃n
j=1 gjH be a decomposition of G into left cosets; for every g ∈ G and every

gi there exists an i′ ≤ n such that ggiH = gi′H. The map V : g 7−→
∏r
i=1 g

−1
i′ ggi · H ′ is easily shown

to be a homomorphism V : G −→ H/H ′ which does not depend on the choice of the gj . Since H/H ′
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is abelian, the kernel of V contains G′, hence V induces a homomorphism G/G′ −→ H/H ′ called the
transfer (Verlagerung) which we will denote by VerG,H .

As an illustration, let G be a 2-group, and H be a subgroup of G with index 2. Let z be any element
in G \H. Then

VerG,H(g) =
{

g2H ′ if g ∈ G \H,
z−1gzgH ′ if g ∈ H.

If we put K = k1, then it is clear that every ideal of k becomes principal in K if and only if VerG,G′

is the trivial map; therefore, the Principal Ideal Theorem follows from the

Theorem 1.8.5. (Principal Ideal Theorem of Group Theory) For finite groups G, the transfer Ver :
G/G′ −→ G′/G′′ is the trivial map.

It was this group theoretic theorem which Furtwängler could prove in [382] by a massive computation.
Later, simpler proofs were given by Iyanaga [383, 390], Taketa [386], Magnus [391], Witt [395, 406], and
Schumann and Franz [396]. An immediate corollary of Thm. 1.8.5 is the following observation of Scholz
[136]:

Corollary 1.8.6. If the class field tower of a number field k terminates at k1, then κK/k = {c ∈ Cl(k) :
c(K:k) = 1} for any subfield k ⊆ K ⊆ k1.

Proof. If G is an (additively written) abelian group, then the transfer VerG,H is easily seen to be just
multiplication by the index (G : H). In particular, the kernel of the transfer G −→ H is just the subgroup
of G killed by (G : H), which corresponds via Artin’s isomorphism to the subgroup of ideal classes of
Cl(k) of order dividing (G : H) = (K : k).

Furtwängler [385] gave a stronger principal ideal theorem for number fields with elementary abelian
2-class groups:

Proposition 1.8.7. Let k be a number field, and assume that Cl2(k) ' (Z/2Z)t for some t ≥ 1. Then
there exist generators c1, . . . , ct of Cl2(k) such that each cj capitulates in at least one of the quadratic
unramified extensions of k.

Taussky [380, 387] showed that the corresponding result for p-class fields, p ≥ 3, fails to hold in
general.

1.8.3 Scholz and Taussky

Before we present some of the results of Scholz and Taussky on the capitulation of 3-class groups, we
will describe their counterparts for 2-class groups. To this end, let k be a number field with C0 =
Cl2(k) ' (2, 2). Then C0 has three subgroups C1, C2, C3 of order 2, and these correspond to the three
unramified quadratic extensions kj/k via Artin’s reciprocity law: Ci = Nkj/kCl2(kj). We will say that
k has capitulation type [i1 i2 i3] if κj = Cij . We will not distinguish between capitulation types which
coincide upon a suitable permutation of the fields ki; if, for example, k has capitulation type [1 0 0]
(exactly the subgroup C1 capitulates in k1/k, whereas in k2/k and k3/k the whole 2-class group Cl2(k)
capitulates), then changing the roles of k1 and k2 shows that k also has capitulation type [0 2 0]; we
will indicate this by [1 0 0] ∼ [0 2 0]. The work of Furtwängler [378] and Kisilevsky [429] can then be
subsumed into the following table, relating capitulation type and Γ = Gal (k2

(2)/k):
Before we explain the method of Scholz and Taussky by verifying this table, we give a related theorem

containing results of Furtwängler [378], Kisilevsky [429], and Couture and Derhem [460]:

Theorem 1.8.8. Let k be a number field, and assume that Cl2(k) ' (2, 2). Let k1 be the 2-class field of
k, ki (1 ≤ i ≤ 3) the three quadratic subextensions in k1/k, and κi the subgroup of Cl(k) which capitulates
in ki/k. Then ki is the class field of k for the class group Ci = Nki/kCl2(ki). Let k2 denote the 2-class
field of k1, and put G = Gal (k2/k). Then the 2-class field tower of k has at most length 2, and G is
either ' (2, 2) or isomorphic to a dihedral, semidihedral or quaternionic 2-group. In fact:

1. G ' (2, 2) ⇐⇒ κi = Cl2(k) (i = 1, 2, 3), i.e. in every extension ki/k the whole 2-class group
Cl2(k) capitulates;
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Table 1.2:

[0 0 0] (2, 2)
[1 0 0] ∼ [0 2 0] ∼ [0 0 3] −
[2 0 0] ∼ [3 0 0] ∼ [0 1 0] ∼ [0 3 0] ∼ [0 0 1] ∼ [0 0 2] −
[0 2 3] ∼ [1 0 3] ∼ [1 2 0] −
[0 2 1] ∼ [0 1 3] ∼ [1 0 2] ∼ [2 0 3] ∼ [1 3 0] ∼ [3 2 0] −
[0 1 2] ∼ [0 3 1] ∼ [2 0 1] ∼ [3 0 2] ∼ [3 1 0] ∼ [2 3 0] −
[0 1 1] ∼ [2 0 2] ∼ [3 3 0] −
[0 2 2] ∼ [0 3 3] ∼ [1 0 1] ∼ [3 0 3] ∼ [1 1 0] ∼ [2 2 0] −
[0 3 2] ∼ [3 0 1] ∼ [2 1 0] Dm, m ≥ 4
[1 1 1] ∼ [2 2 2] ∼ [3 3 3] −
[1 1 2] ∼ [1 3 1] ∼ [2 2 1] ∼ [3 2 2] ∼ [3 1 3] ∼ [2 3 3] −
[1 2 2] ∼ [1 2 1] ∼ [1 1 3] ∼ [1 3 3] ∼ [2 2 3] ∼ [3 2 3] −
[2 1 1] ∼ [2 1 2] ∼ [2 3 2] ∼ [3 1 1] ∼ [3 3 1] ∼ [3 3 2] SD2m, m ≥ 8
[2 3 1] ∼ [3 1 2] −
[1 2 3] H8

[1 3 2] ∼ [2 1 3] ∼ [3 2 1] H2m, m ≥ 8

2. G ' H8 ⇐⇒ κi = Ci for i = 1, 2, 3.

In all other cases, k2 is cyclic over exactly one of the ki, say k1. Then Cl2(k1) ' Z/mZ for some 2-power
m, and we have

3. G ' Dm ⇐⇒ κ1 = Cl2(k), κ2 = C3, κ3 = C2;

4. G ' SD2m, m ≥ 8 ⇐⇒ κ1 ∩ C1 = 1, κ2 = C3, κ3 = C2;

5. G ' H2m, m ≥ 8 ⇐⇒ κ1 = C1, κ2 = C3, κ3 = C2.

If G ' SD2m then κ1 = C2, where k2 is the unique ki over which k2 is dihedral; moreover, in this case
there is a unit ε ∈ Ek \ E2

k such that ε ≡ ξ2 mod 4.

Let us come back to the paper of Scholz and Taussky. Let ` be a prime, and let k be a number
field with Cl`(k) ' (`, `). Let k1 and k2 denote the first and second Hilbert `-class field of k, and put
Γ = Gal (k2/k). Then Γ is a metabelian `-group, i.e. the derived group Γ′ is abelian. For R,S, T ∈ Γ
define ST := T−1ST , RS+T = RSRT and RnS = (Rn)S . Then for all A,B ∈ Γ′ and all R,S, T ∈ Γ, the
following relations are valid:

(1) AS+T = AT+S ; (2) AST = ATS ;
(3) (AB)S = ASBS ; (4) A(R+S)T = ART+ST .

Their verification is straightforward.
Now assume in addition that Γ = 〈S, T 〉 is an `-group of rank 2; the next three propositions are

formulated only for the special case Γ/Γ′ ' (`, `) but can actually be generalized to all `-groups of rank
2 (cf. Furtwängler [382]):

Proposition 1.8.9. Γ′ is generated as a G-module by the commutator A = [S, T ] = S−1T−1ST , i.e.
every B ∈ Γ′ can be written in the form B = AF (S,T ), where the symbolic exponent F (S, T ) ∈ Z[S, T ] is
a polynomial in S and T .

Proof. Put {A} = {AF (S,T ), F ∈ Z[S, T ]}. Then we obviously have {A} ⊆ Γ′. On the other hand,
every commutator in Γ has the form [Si, T j ]. The claim now follows from the identity given in the next
proposition.

Proposition 1.8.10. [Si, T j ] = [S, T ](1+S+S2+...+Si−1)(1+T+T 2+...T j−1).
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Proof. Put A = [S, T ] = S−1T−1ST ; from T−1ST = SA we get T−1S2T = SASA = S2AS+1, and
induction shows

T−1SiT = (T−1ST )i = SiA1+S+S2+...+Si−1
.

Now we find
T−2SiT 2 = T−1SiA1+S+S2+...+Si−1

T

= T−1SiTA(1+S+S2+...+Si−1)T

= SiA(1+S+S2+...+Si−1)(1+T )

etc.

It follows from (1) − (4) that the set M = {f ∈ Z[S, T ] : Af = 1} = Ann(A) is an ideal in the
polynomial ring Z[S, T ]. It is clear that M = (1) if and only if A = 1, i.e. iff Γ is abelian. The ideal M
contains much information about the structure of Γ. For example, Γ′ is cyclic as a group if and only if
X,Y ∈ M (here X = S − 1 and Y = T − 1), and that Γ′ ' Z/`Z if and only if M = (`,X, Y ). More
generally we have

Proposition 1.8.11. Z[X,Y ] = Z[S, T ] and Γ′ ' Z[X,Y ]/M.

Proof. The claim Z[X,Y ] = Z[S, T ] is trivially true. Now the group homomorphism Z[X,Y ] −→ Γ′ :
F (X,Y ) 7−→ AF (X,Y ) (from the additive group Z[X,Y ] to the multiplicative group Γ′) is onto, and its
kernel is M by definition.

The following result will turn out to be quite useful:

Proposition 1.8.12. If M 6= (1) then L = (`,X, Y ) |M.

Proof. First we notice that there must be an integer a ∈ N such that `a ∈M: this follows from the fact
that Γ′ is a finite `-group. Since S` ∈ A, we have AS

`

= A and consequently S` − 1 ∈ M. But now
the congruence 0 ≡ S` − 1 = (X + 1)` − 1 = X` − `P (X) mod M for some P (X) ∈ Z[X] shows that
X` ≡ `P (X) mod M. Therefore, there is a b ∈ N such that X`b ∈M and Y `

b ∈M.
Now let L = r` + sX + tY be any polynomial in L. Using what we have proved so far we see that

L`
m ≡ 0 mod M for some m ∈ N. But now

(1 + L)−1 ≡ 1− L+ L2 − L3 + L4 ± . . . mod M

shows that 1 + L is a unit modulo M, since the geometric series on the right hand side is finite.
Similarly one proves that a+L is a unit if ` - a; this shows that every element of Z[X,Y ] \L is a unit

modulo M, hence we have L ⊇M.

Next we study the subgroups of index ` in Γ. Assuming for the sake of simplicity that Γ/Γ′ is
elementary abelian, these subgroups are

CS = 〈S,Γ′〉, CT = 〈T,Γ′〉, CST = 〈ST, Γ′〉, . . . , CST `−1 = 〈ST `−1,Γ′〉.

By Artin’s reciprocity theorem, these subgroups of index ` in Γ correspond to subgroups of order ` in
Cl`(k); following Scholz and Taussky, the ideal class corresponding to the coset SaT bΓ′ will be denoted by
SaT b. Moreover, let κS denote the subgroup of ideal classes in Cl`(k) which capitulate in the extension
fixed by CS , and let κT etc. be defined accordingly.

` = 2

From now on we assume that ` = 2 and Cl2(k) ' (2, 2). We will need the following definitions and
relations in addition to those already given:

S2 = AFS T 2 = AFT (ST )2 = AFST

X = S − 1 Y = T − 1 Z = ST − 1
X FS ≡ 0 Y FT ≡ 0 Z FST ≡ 0
Y FS ≡ 2 +X X FT ≡ −2− Y FST ≡ FS + FT − 1− Y
X2 ≡ −2X Y 2 ≡ −2Y Z2 ≡ −2Z
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The formulas for the transfer which we have given above show that

S ∈ κS =⇒ Ver(S) = ST+1 = AFS+1 ∈ C ′S ,
S ∈ κT =⇒ Ver(S) = S2 = AFS ∈ C ′T ,
S ∈ κST =⇒ Ver(S) = S2 = AFS ∈ C ′ST .

But C ′S is generated by commutators of the form [S,AF ] = AFX , and we conclude that C ′S = {AX}.
Therefore AFS+1 ∈ C ′S if and only if FS + 1 ≡ 0 mod (M, X). Similarly, AFS ∈ C ′T is equivalent to
FS ≡ 0 mod (M, Y ) etc.

Proposition 1.8.13. Let the notation be as above.

a) If S ∈ κS and S ∈ κT then k has capitulation type [0 0 0];

b) κ = [2 3 1] is impossible;

c) S ∈ κS =⇒ X ∈M and FS ≡ −1 mod M

d) S ∈ κS and T ∈ κT implies M = L and Γ = H8;

e) T ∈ κS ∩ κST =⇒ Y + 2 ∈M;

f) T ∈ κS ∩ κST and ST ∈ κT lead to M = (2n, X, Y + 2) for some n ≥ 1;

g) If κ = [0 3 2] or κ = [2 3 2] then M = (2n, X, Y + 2) and FT ≡ 0 mod M; moreover, if κ = [0 3 2]
then FS ≡ −1 mod M, and if κ = [2 3 2] then FS ≡ −1 + 2n−1 mod M.

Proof. We know that S ∈ κS ⇐⇒ AFS+1 ∈ {AX}, and that S ∈ κT ⇐⇒ AFS ∈ {AY }. This
implies that FS + 1 ≡ 0 mod (M, X) and FS ≡ 0 mod (M, T − 1). If M 6= (1), then L | M implies
1 = FS + 1− FS ≡ 0 mod L: this is a contradiction.

Note that a) explains all the forbidden capitulation types except [2 3 1] ∼ [3 1 2]. It is quite easy to
exclude this possibility, too: κ = [2 3 1] clearly implies the congruences FT ≡ 0 mod (M, X), FST ≡
0 mod (M, Y ), FS ≡ 0 mod (M, Z). In particular we have FS ≡ FT ≡ FST ≡ 0 mod L, because M 6= (1)
implies L |M. But now 0 ≡ FST ≡ FS + FT − 1− Y ≡ −1 mod L yields the desired contradiction. This
proves b).

c) Next we will show that S ∈ κS implies X ∈M. In fact, from the congruence FS+1 ≡ 0 mod (M, X)
we deduce that FS ≡ −1 + XG mod M for some G ∈ Z[S, T ]. Using X2 ≡ −2X mod M we find
0 ≡ XFS ≡ −X −X2G ≡ −X(1− 2G) mod M. But 1− 2G is a unit in M, hence we get X ≡ 0 mod M
as claimed.

d) Now we claim that S ∈ κS and T ∈ κT leads to M = L and Γ = H8. In fact, we know that
X,Y ∈ M, and we have the congruences FS + 1 ≡ FT + 1 ≡ 0 mod M. This gives 0 ≡ XFT ≡
−2− Y ≡ −2 mod M, and we find M = L. Moreover we get S2 = AFS = A−1 and T 2 = A−1 as well as
A2 = 1 = [A,S] = [A, T ]. The group defined by these relations is the quaternion group of order 8.

e) T ∈ κS ∩ κST implies Y + 2 ∈ M. In fact we have FT ≡ 0 mod (M, X) and FT ≡ 0 mod (M, Z),
where Z = XY = XY +X + Y . This shows that FT ≡ XZG mod M for some G ∈ Z[X,Y ]. Replacing
Z by XY and using X2 + 2X ≡ 0 mod M we get FT ≡ −X(2 + Y ) mod M. Next we find −2 − Y ≡
XFT ≡ −X2(2 + Y )G mod M, hence 0 ≡ (2 + Y )(1 +X2G) mod M. But 1 +X2G is a unit modulo M,
therefore we must have Y + 2 ∈M.

f) T ∈ κS ∩κST and ST ∈ κT lead to M = (2n, X, Y +2) for some n ≥ 1. From FST ≡ 0 mod (M, Y )
we get FST ≡ Y G ≡ −2G mod M for some G ∈ Z[X,Y ]. But Y +2 ∈M shows FST ≡ FS+FT −1−Y ≡
FS + 1 mod M. Using XFS ∈M we finally get X ≡ −2GX mod M and X(1 + 2G) ∈M. Since 1 + 2G
is a unit, our claim X ∈M is proved.

g) If κ = [0 3 2] or κ = [2 3 2] then M = (2n, X, Y + 2) and FT ≡ 0 mod M. This follows from what
we just have proved.

If κ = [0 3 2] then FS ≡ −1 mod M. This follows from part c).
If κ = [2 3 2] then FS ≡ −1 + 2n−1 mod M. In fact we have 2FST ≡ −Y FST ≡ −Y (FS + 1) ≡

−2 − Y − X ≡ 0 mod M as well as FST ≡ FS + 1 mod M. The possibility FST ≡ 0 mod M would
imply FS ≡ −1 mod M and S ∈ κS ; this shows that we must have FST ≡ 2n−1 mod M and, therefore,
FS ≡ −1 + 2n−1 mod M as claimed.

28



The following proposition is taken from Taussky’s paper [141]:

Proposition 1.8.14. If M 6= (1) then we can choose S and T in such a way that X ∈ M and Y ≡
2u mod M, where u is some odd integer. In particular, if G is a 2-group such that G/G′ ' (2, 2) then G′

is cyclic.

Proof. If M = (1) there is nothing to prove. If not then L | M, and the congruence FST ≡ FS + FT −
1 − Y mod M shows that we may assume without loss of generality that FS(0, 0) 6≡ 0 mod 2 (otherwise
we just replace T by ST and observe that this leaves A = [S, T ] = [S, ST ] invariant).

From the congruences (all taken modulo M) XFS ≡ 0 and Y FS ≡ 2 + X we get XY FS ≡ 0 and
X2 ≡ −2X; similarly we can derive Y 2 ≡ −2Y . This shows that every polynomial in X,Y can be written
as a Z-linear combination of X,Y , and XY . We can therefore write

FS = u+ aX + bY + cXY

for u, a, b, c ∈ Z and u odd. Multiplying this equation by X we get

0 ≡ XFS ≡ (u− 2a)X + (b− 2c)XY, (1.6)

and, similarly,
2 +X ≡ Y FS ≡ (u− 2b)Y + (a− 2c)XY. (1.7)

Let k be the smallest integer such that XY k ≡ 0 (such a k exists since Y 2 ≡ 2Y and because the order
of A is a power of 2).

Multiplying XFS by Y k−1 we find 0 ≡ (u− 2a)XY k−1; since u is odd, u− 2a is a unit mod M, and
we must have XY k−1. This gives XY ∈ M, and from (1.6) we read off that X ∈ M. But now (1.7)
shows that Y ≡ 2u′ for some odd integer u′, hence we have Y ∼ 2 as claimed.

Therefore every polynomial in Z[X,Y ] is congruent modulo M to an integer: every symbolical power
of A is therefore a common power, and in particular, G′ is cyclic.

` = 3

Next we will describe the results of Scholz and Taussky [392]. The capitulation types are defined as
above; since the paper only treats imaginary quadratic base fields, Scholz and Taussky need not consider
capitulation types containing a 0. Here’s what they found:

1. If k is imaginary quadratic, then M 6= (1);

2. If M 6= (1), then M ≡ 0 mod L;

3. If M 6≡ 0 mod L2 = (3, X2, XY, Y 2) then in all four cubic unramified extensions the same ideal
class (say S1) capitulates, and we have M = L, S3

1 = 1, and S3
2 = A.

4. If k is imaginary quadratic, then M 6= L.

5. If k has capitulation type [1 1 2 3] (i.e. if the ideal class S1 capitulate in the fixed fields of S1 and
S2, and if S2 and S1S2 capitulate in the fixed fields of S1S2 and S2

1S2, respectively) then M = L2,
F1 = F2 = X.

The knowledge of M is not sufficient for determining the group structure of Γ = Gal (k2/k), but we
can at least see that

a) if M = L, then #Γ = 33 and Γ′ = 〈A〉, i.e. Γ is one of the two non-abelian groups of order 27;

b) if M = L2, then #Γ = 35 and Γ′ = 〈A,AX , AY 〉 ' (3, 3, 3); moreover, Γ/Γ′ ' (3, 3).

In both cases, the complete structure can be deduced from F1 and F2. In (5), for example, we find

Γ = 〈S1, S2 : S9
1 = S9

2 = 1, [S2, S1] = A,AX = [S1, A
−1] = S3

1 = S3
2 , A

3 = 1, ∗〉,
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where ∗ stands for the relations coming from 〈A,AX , AY 〉 ' (3, 3, 3).
If k is imaginary quadratic, then (1) – (4) imply that M ≡ 0 mod L2, i.e. that Gal (k2/k) is a 3-group

of order at least 35.
The work of Scholz and Taussky was extended in a number of papers. Taussky [422, 424] proved

results like

Proposition 1.8.15. Let p > 3 be an odd prime, and put X = S − 1, Y = T − 1. Let Γ be the `-group
of order p5 defined by M = (p,X2, XY, Y 2). If k is a number field such that Gal (k2

(p)/k) ' Γ, then all
cyclic unramified p-extensions K/k are of type A.

Chang and Foote [433] (see also [430]) introduced the capitulation number ν for fields k with Clp(k) '
(p, p): this is the number of unramified cyclic p-extensions K/k such that κK/k = Clp(k) (i.e. such
that the whole p-class group capitulates). Clearly ν ∈ {0, 1, . . . , p + 1}. For p = 2 we have seen that
ν ∈ {0, 1, 3}; Chang and Foote showed that, for p ≥ 3 and for any ν ∈ {0, 1, . . . , p+1}, there are p-groups
Γν such that any field k with Gal (k2

(p)/k) ' Γν has capitulation number ν.
In [392], Scholz and Taussky claimed that the p-class field tower of an imaginary quadratic number

field k with capitulation type Xα has length 2; their proof (or rather its sketch) was shown to be erroneous
by Brink and Gold [182] (cf. also Brink [175]).

Related articles are Browkin [145, 146], Schmithals [440], Heider and Schmithals [441], Nebelung
[453], Mayer [457] and Miyake [188], who studied p-groups with the following property: for every normal
subgroup H of G such that G/H is cyclic, the kernel of the transfer map G/G′ −→ H/H ′ has order
(G : H). If G = Gal (k2/k), where k2 is the second p-class field of an imaginary quadratic number field k,
then G clearly has this property, since the capitulation kernel in cyclic unramified extensions K/k equals
(K : k).

Arrigoni [195] showed that this condition follows from G being a Schur σ-group and proved the
following generalization of a result of Scholz and Taussky:

Theorem 1.8.16. Let k be an imaginary quadratic number field and p and odd prime. If Clp(k) ' (q1, q2),
where q1 and q2 are powers of p such that q1 | q2, then q31 divides the class number h(k1) of the Hilbert
p-class field k1 of k. If h(k1) = q31, then Clp(k1) ' (q1, q1, q1), and the p-class field tower of k is finite.

For capitulation in Zp-extensions, see Kida [434] and Fukuda and Komatsu [466].

1.8.4 Principal Ideal Theorems

Furtwängler’s principal ideal theorem was subsequently generalized, for example by Terada [402]:

Proposition 1.8.17. If K/k is cyclic and unramified, then the ambiguous ideal classes of K capitulate
already in k1.

Another result also due to Terada which contains Prop. 1.8.17 as a special case is

Proposition 1.8.18. If K/k is cyclic, then the ambiguous ideal classes of K capitulate already in Kgen.

Adachi [426] conjectured that this theorem can be generalized to abelian extensions K/k, i.e. that
the ambiguous ideal classes of K capitulate in Kcen. Miyake [452], however, gave a group theoretical
counterexample. Nevertheless, the following theorem holds:

Proposition 1.8.19. Let K/k be a finite abelian extension; then the strongly ambiguous ideal classes of
K capitulate in Kgen.

The following result due to Miyake is a mild generalization of Hilbert’s Theorem 94 to abelian exten-
sions:

Proposition 1.8.20. Let k ⊆ K ⊆ k1; if Kgen = Kcen (this implies Kgen = k1) then (K : k) | #κK/k.

In fact, if K/k is cyclic, then Kgen = Kcen, and Theorem 94 results. Suzuki [459] finally proved that
Theorem 94 also holds in abelian extensions by reducing it to a group theoretical statement via Artin’s
reciprocity law:
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Theorem 1.8.21. For unramified abelian extensions K/k, the order of the capitulation kernel κK/k is
divisible by (K : k).

Families of number fields whose ideal class group capitulates in a subfield of the Hilbert class field have
been studied by Iwasawa [451, 456], Fujisaki [455], and Benjamin, Sanborn and Snyder [463]. Necessary
conditions for a p-class field tower to be abelian have been given by Bond [436]; Hilbert’s Theorem 94 for
extensions of type (pn, p) was proved by Schipper [427] and Bond [294].

1.9 Class Field Towers

1.9.1 Terminating Class Field Towers

We start with one of the simplest means to decide whether the p-class field tower of a given field k
terminates:

Proposition 1.9.1. If K/k is an unramified p-extension such that k1
(p) ⊂ K, and if M(G) = 1, where

G = Gal (K/k), then the p-class field tower of k terminates with K.

Proof. Let L be the central p-class field of K with respect to k; Galois theory and Artin’s reciprocity law
show that k1

(p) is the fixed field of G′, and the maximality of the p-class field implies that k1
(p) is also the

fixed field of Γ′. Now k1
(p) ⊂ K shows that Gal (L/K) ⊂ Γ′, hence Gal (L/K) ⊂ Γ′ ∩ Z(Γ), contradicting

the assumption M(G) = 1.

As a corollary of Prop. 1.9.1 we get the well known

Proposition 1.9.2. If k is a number field with cyclic p-class group, then its p-class field tower terminates
with k1

(p), and we have Ek = NK/kEK and Clp(K) ' Clp(k)(K:k) for every subfield K of k1
(p)/k.

Proof. k1
(p)/k is cyclic, hence M(Gal (k1

(p)/k)) = 1. Now Prop. 1.9.1 shows that every unit in k is the norm
of a unit in k1

(p), and the formula NL/kη = NL/K
(
NK/kη

)
proves the second claim. Since NK/kClp(K)

has index (K : k) in Clp(k) (cf. Takagi’s main theorem), we conclude that #Clp(k)(K:k) divides the class
number of K. On the other hand we know that 1 = Nk1/KClp(k1) has index (k1 : K) in Clp(K), thus
the p-class number of K divides #Clp(k)(K:k).

Next we study groups with two generators. The following result due to O. Taussky is well known
(Thm. 1.8.8); we will nevertheless give a proof, mainly in order to demonstrate how to use the concept
of the Schur multiplier. We also remark that Dn will denote the dihedral group of order 2n.

Proposition 1.9.3. Let G be a 2-group of order 2m such that G/G′ ' (2, 2). Then either G ' (2, 2), or
G is a dihedral, semidihedral or quaternion group of order 2m,m ≥ 3.

Proof. If G′ = 1 there is nothing to prove, so assume that G′ 6= 1. Then by a well known property of
p-groups there is a normal subgroup N1 C G such that N1 is a subgroup of index 2 in G′ and G′/N1 ⊆
Z(G/N1). Hence 1 −−−−→ G′/N1 −−−−→ G1 = G/N1 −−−−→ G0 = (2, 2) −−−−→ 1 is a covering of G0:
it suffices to check that we have G′1 ' G′N1/N1 = G′/N1 and G′/N1 ⊆ Z(G1)∩G′1. Now M(G0) ' Z/2Z
implies that G1 is a covering group of G0, so either G ' H8 (quaternion group of order 8) or G1 ' D4

(dihedral group of order 8).
In case |G| = 8 we are done; otherwise N1 contains a subgroup N2 such that N2 C G and N1/N2 ⊆

Z(G/N2). Therefore 1 −−−−→ N1/N2 −−−−→ G2 = G/N2 −−−−→ G1 = G/N1 −−−−→ 1 is a covering,
and since M(H8) = 1, we must have G1 ' D4. Now M(D4) ' Z/2Z shows that the covering is maximal,
hence G2 is a covering group of G1, and we must have G2 ' H16, G2 ' SD16 (semidihedral group of
order 16), or G2 ' D8.

The assertion now follows by induction, noting that M(SD2n) ' M(Hn) = 1 for all n = 2m ≥ 8,
M(Dn) ' Z/2Z for n = 2m ≥ 4, and that these are the only covering groups of Dn (cf. Schur [563] or
Karpilovsky [590]).
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This proof also sheds some light on the group-theoretical background of the following result of Furt-
wängler [378]. In this paper, he proved the existence of number fields k such that their 2-class field k1

2

has even class number: this discovery led Furtwängler to the question whether there are number fields
whose class field towers do not terminate, and so gave rise to the ”class field tower problem” solved later
by Golod and Shafarevic.

Proposition 1.9.4. Let k be a number field such that Cl2(k) ' (2, 2). Then, Cl2(k1
2) is cyclic, and the

2-class field tower of k terminates with k2
2.

Proof. Let K = k2
2; then G = Gal (K/k) is a 2-group such that G/G′ ' (2, 2), hence is one of the groups

listed in Prop. 1.9.3. If G ' Hm or G ' SDm, then we have M(G) = 1, and Proposition 2 proves our
claim. If G ' SDm, however, either h(K) is odd (and there is nothing to prove), or h(K) is even; in this
case, there is an unramified quadratic central extension L/K such that

1 −−−−→ Gal (L/K) −−−−→ Gal (L/k) −−−−→ G = Gal (K/k) −−−−→ 1

is a covering. This implies that Gal (L/k) is isomorphic to one of the groups listed in 2.2, hence L/k1
2 is

an unramified cyclic 2-extension contradicting the fact that K = k2
2 is the maximal unramified extension

of k. v The fact that Cl2(k1
2) is cyclic follows from Artin’s isomorphism Cl2(k1

2) ' G′ and the fact that
the 2-groups Dn, Hn, and SDn have cyclic commutator groups.

Suppose that a p-group G has covering groups Γ1, Γ2, . . . ,Γn, and look at the graph

Γ1 Γ2 . . . Γn
QQ

QQQ

A
A
A ���

��

G

The Γi are p-groups, hence we can define inductively a (possibly infinite) graph by inserting the covering
groups of the Γi etc. The final result is called the covering tree of G and will be denoted by D(G). A
cyclic groups has trivial covering tree, and it follows from the work of Schur that

. . . . . . . . .
Z

Z �
�

H32 D16 SD32

Z
Z �

�

H16 D8 SD16

Z
Z �

�

H8 D4

Z
Z

(2, 2)

is the covering tree of G = (2, 2). Obviously, D(G) contains only metabelian groups, i.e. groups with
G′′ = 1. Let the length of a p-group be the smallest integer n such that G(n) = 1, where the nth derived
group G(n) is defined inductively by G(0) = G and G(n+1) = [G(n), G(n)]. O. Taussky asked for all
p-groups such that D(G) contains only groups of bounded length; Hobby [492] obtained partial results,
and Serre [499] succeeded in proving that only cyclic groups and (2, 2) have this property. This seems
to be the only non-trivial result on covering trees of p-groups; it would be highly desirable to have a
description even of the lower layers of D(G) for G = (2, 4).

If k is a number field with 2-class field k1
2, and if Cl2(k1

2) ' (2, 2), then 1.9.3 shows that the 2-class
field tower of k terminates with k3

2; actually, a little bit more is true:

Proposition 1.9.5. If k is a number field such that Cl2(k1
2) ' (2, 2), then we have k3

2 = k2
2.
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Table 1.3:

p f h
163 y4 − y3 − 7y2 + 2y + 9 1
277 y4 − y3 − 11y2 + 4y + 12 2
349 y4 − y3 − 10y2 + 3y + 20 1
397 y4 − 13y2 − 2y + 19 1
547 y4 − 2y3 − 19y2 + 11y + 10 1
607 y4 − 2y3 − 13y2 + 7y + 33 2
709 y4 − 17y2 − 13y + 35 1
853 y4 − y3 − 28y2 + 31y − 2 1
937 y4 − y3 − 16y2 + 11y + 54 1

Proof. Suppose that k3
2 6= k2

2 and let G = Gal (k3
2/k); then 1.9.3 shows that G′ ' Gal (k3

2/k
1
2) is dihedral,

semidihedral or quaternionic, and all these groups have cyclic centers. Burnside has shown that p-groups
G with cyclic Z(G′) have cyclic G′. But if k3

2/k
1
2 is cyclic, we must have k3

2 = k2
2 in contradiction to our

assumption.

In some special cases we can improve Prop. 1.9.4:

Proposition 1.9.6. Suppose that k is a number field with odd class number, and let K/k be a cyclic
cubic extension such that Cl2(K) ' (2, 2). Then Gal (K1

2/k) ' A4 ' PSL(2, 3), where either

a) K1
2 has odd class number; or

b) Cl2(K1
2 ) ' Z/2Z, and Gal (K1

2/k) ' Ã4 ' SL(2, 3).

Proof. If there were an ideal class c ∈ Cl2(K) fixed by Gal (K/k), then the norm to k of c would not be
trivial in contradiction to our assumption that k has odd class number. Now let σ ∈ Gal (K/k) \ {1};
we can choose ideal classes a, b ∈ Cl2(K) such that Cl2(K) = 〈a, b〉 and σ(a) = b, σ(b) = ab, σ(ab) = a.
This implies that Gal (K1/k) ' A4, because 1 −−−−→ 〈a, b〉 −−−−→ A4 −−−−→ 〈σ〉 −−−−→ 1 is the
extension which corresponds to this action.

Now suppose that K2
2 6= K1

2 , and let L be the unramified quadratic extension of K1
2 (recall that, by

1.9.3, Cl2(K1
2 ) is cyclic). Let L′/K1

2 be any extension conjugated to L/K1
2 over k; then L′/K1

2 is an
unramified quadratic extension, and since Cl2(K1

2 ) is cyclic, we must have L = L′, i.e. L/k is normal.
Moreover, Gal (L/K1

2 ) is central in Gal (L/k), because any normal subgroup of order 2 is contained in the
center of a group. Therefore, G is a covering group of A4; Schur has shown that Ã4 is the only covering
group of A4. We conclude that G′ ' H8, and since M(H8) = 1, the 2-class field tower of K terminates
with K2

2 .

Table 1.4 gives the cyclic cubic fields k of prime conductor p < 1000 with even class number, a
polynomial of degree 4 whose roots generate the 2-class field of k, and the class number of the quartic
field generated by a root of f . Table 1.4 contains some examples of cyclic cubic fields of prime conductor
p whose 2-class field tower is generated by the roots of a polynomial g of degree 8 with Galois group Ã4;
the last column h gives the class number of this octic extension.

Example 1.9.1. Let d = −283 and k = Q(
√
d ); k has class number 3, hence there is an unramified

cubic cyclic extension K/k. The three cubic subfields of K/Q have class number 2, and this implies
that Cl(K) ' (2, 2). Let F denote one of the (conjugate) number fields of degree (F : Q) = 4 with
discF = −283; then the normal closure of F/Q is the class field K1 of K. A computation of the number
of ambiguous ideal classes in F (

√
d )/F yields that F (

√
d ) and hence K1 have even class number (recall

that (K1 : F (
√
d )) = 3, so no ideal class of even order capitulates in K1/F (

√
d )). Using Odlyzko bounds,

one easily shows that h(K1) = 2 and that K2 = k3 = k4. Now Prop. 1.9.6 tells us Gal (K1/k) ' Ã4.
The case d = −331 can be treated in a similar way.
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Table 1.4:

p g h
163 x8 + 9x6 + 23x4 + 14x2 + 1 1
349 x8 + 18x6 + 75x4 + 85x2 + 1 1
397 x8 + 150x6 + 135x4 + 22x2 + 1 1
547 x8 + 1057x6 + 1739x4 + 554x2 + 1 3
709 x8 + 125x6 + 215x4 + 42x2 + 1 7
853 x8 + 93x6 + 1755x4 + 3546x2 + 1 1
937 x8 + 1486x6 + 341591x4 + 13077x2 + 1 1

It is possible to find explicit generators:

k = Q(
√
−283 ) k = Q(

√
−331 )

k1 = k(α), α3 + 4α− 1 = 0, k1 = k(α), α3 − 4α2 + 8α− 9 = 0,
k2 = k1(β), β4 − β − 1 = 0, k2 = k1(β), β4 − 2β2 − 3β − 1 = 0,
k3 = k2(γ), γ2 = −3 + 4β2 − 4β3, k3 = k2(γ), γ2 = −3− 4β + 4β3.

The existence of these unramified Ã4-extensions of k has already been proved by Tate (cf. Serre [56], as
well as Honda [25], Jehanne [531], in particular his thesis [532]).

Proposition 1.9.7. Let k be a number field with p-class field tower kn(p); if Clp(k1
(p)) has rank ≤ 2, then

Clp(k2
(p)) is cyclic, and k3

(p) = k4
(p). If, moreover, Clp(k) has rank ≤ 2, then k2

(p) = k3
(p).

Proof. This is a translation of the following group-theoretical result due to Blackburn: let d(G) denote
the number of generators of G, i.e. the rank of the elementary abelian p-group G/G′Gp. If G is a p-group
such that d(G′) ≤ 2, then G′′ is cyclic, and G′ has class at most 2. If moreover d(G) ≤ 2, then G′ is
abelian.

We know the following bounds of the p-rank of Clp(k1
(p)):

Proposition 1.9.8. If Clp(k) ' (pm, pn), then rank Clp(k1
(p)) ≤ (pm − 1)(pn − 1).

Obviously, Prop. 1.9.8 contains Prop. 1.9.4 as a special case. If Cl2(k) ' (2, 4), then the 2-rank
r2(k1

2) of Cl2(k1
2) is bounded by 0 ≤ r2(k1

2) ≤ 3, and all these values actually occur:

disc k rank Cl2(k1
2) Cl2(k1

2) Gal (k2
2/k)

−264 0 1 (2, 4)
−260 1 Z/2Z M16

−580 1 Z/4Z 32.032
−820 1 Z/8Z 64.139
−1443 2 (2, 8) 128.?
−25 355 3 ? ?

The example with discriminant d = −1443 has been computed using pari; the fact that rank Cl2(k1
2) =

3 for k = Q(
√
−25 355 ) follows from Prop. 1.9.7 and the result of Schmithals [170] which says that k

has an infinite 2-class field tower.
The proof of Prop. 1.9.8 consists once more of a reduction to a group-theoretical result due to

Blackburn via Artin’s reciprocity law:

Let G be a p-group such that G/G′ ' (pm, pn); then G′ can be generated by (pm − 1)(pn − 1)
elements.

Another quite useful criterium to prove the finiteness of 2-class field towers is the following:

34



Proposition 1.9.9. ([214]) Let k be a number field with Clk,2 ' (2m, 2n). If there is an unramified
quadratic extension of k with 2-class number 2m+n−1, then all three unramified quadratic extensions of k
have 2-class number 2m+n−1, and the 2-class field tower of k terminates with k1.

A criterium going in the other direction was proved by Benjamin [189] as well as in [214] (compare
the discussion after Cor. 1.3.14):

Proposition 1.9.10. If k is an imaginary quadratic number field whose 2-class group contains a subgroup
of type (2, 2, 2), then Cl2(k1) has rank ≥ 2.

1.9.2 Golod-Shafarevic: Infinite Class Field Towers

The first result on ‘large’ class field towers is due to Scholz [136], who proved that p-class field towers
can be arbitrarily large:

Proposition 1.9.11. For any prime p and every integer n ∈ N there exists a cyclic extension k/Q of
degree p such that kn+1

(p) 6= kn(p).

Moriya [138] proved that the class number of k1
(p) is divisible by p if rank Clp(k) ≥ 1 + rankE/Ep.

Finally Fröhlich discovered the following result:

Proposition 1.9.12. Let k/Q be a cyclic extension of prime degree p; if #Ram(k/Q) ≥ 4 then k2
(p) 6=

k1
(p). Moreover, this is best possible, since there exist cyclic extensions k/Q with #Ram(k/Q) ≤ 3 such

that Clp(k1) = 1.

The conjecture that class field towers are always finite was disproved by Golod and Shafarevic [148];
the following inequality of Vinberg and Gaschütz is slightly sharper than the original (see also Serre [153],
Panella [152], and Roquette [155]):

Theorem 1.9.13. Let k be an algebraic number field, p a prime number, and suppose that the p-class
field tower is finite and terminates with K = k∞(p). Put d = rank Clp(k) and r = d + dimpEk/NK/kEK ;
then d2 < 4r.

(Here, dimpG denotes the dimension of the Fp-vector space G/Gp for any abelian group G). In
particular, if the p-rank of the class group is large compared to the unit group, then the p-class field
tower of k must be infinite. More exactly:

Corollary 1.9.14. Let κ denote the Z-rank of the unit group Ek, und put δ = 1 if ζp ∈ k and δ = 0
otherwise. If

d ≥ 2 + 2
√
κ+ δ + 1 (1.8)

then k has infinite p-class field tower.

Refinements of the theorem of Golod and Shafarevic have been obtained by Koch [156], Vinberg
[151], and Schoof [179]. Before we can give Schoof’s version, we have to introduce some notation.
For a p-group G, let I denote the augmentation ideal of the group ring Fp[G]. The exact sequence
0 −−−−→ I −−−−→ Fp[G] −−−−→ Fp −−−−→ 0 induces a canonical isomorphism H2(G,Fp) ' H1(G, I).
The natural maps

. . . −−−−→ H1(G, I3) −−−−→ H1(G, I2) −−−−→ H1(G, I)

allow us to define factor groups

Rk =
im (H1(G, Ik−1) −→ H1(G, I))
im (H1(G, Ik) −→ H1(G, I))

, (k ≥ 2).

Put rk = dimpRk; then there is only a finite number of nonzero rk’s, and we have
∑
k≥2 rk = r. Schoof

proved

Theorem 1.9.15. If G is a finite p-group, then
∑
k≥2 rkt

k − dt+ 1 > 0 for 0 < t < 1.
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Substituting t = d/2r in the inequality rt2−dt+1 ≥
∑
k≥2 rkt

k−dt+1 > 0 we get back the inequality
of Vinberg and Gaschütz.

Another refinement of this inequality is due to Gaschütz and Newman [158]. For finite p-groups G
they used the dimension subgroups G1 = [G,G]Gp and G2 = [G,G1]G

p
1 (for p = 2), G2 = [G,G1]Gp (for

p ≥ 3) introduced by Gruenberg, put d = rankG1 and e = rankG2 and proved

Theorem 1.9.16. If G is a finite p-group, then

r ≥ 1
2
d2 − (−1)p−1 d

2
− e (1.9)

and
r >

1
2
d2 − (−1)p−1 d

2
− e+ (e+ (−1)p−1 d

2
− 1

4
d2)

d

2
. (1.10)

It is an elementary exercise to deduce r > d2/4 from these two inequalities. If G = Gal (K/k), then
the fixed field of G1 is the maximal elementary abelian unramified extension L of k, and the fixed field
of G2 is the maximal elementary abelian extension of L contained in Lcen.

For quadratic number fields and odd primes p, Koch and Venkov [163] and Schoof [179] improved the
result of Golod and Shafarevic by showing

Proposition 1.9.17. Let k be a quadratic number field or a quadratic extension of an imaginary quadratic
number field F with class number h(F ) 6≡ 0 mod p. If rank Clp(k) ≥ 3 and p is an odd prime, then k has
infinite p-class field tower.

This can be deduced from Thm. 1.9.15 by proving that rk = 0 for all even k ≥ 2 in this case, using
the action of Gal (k/F ) on the groups Rk. Observing r2 = 0 and r − d ≤ 1 we find (d+ 1)t3 − dt+ 1 ≥∑
k≥2 rkt

k − dt+ 1 > 0, and substituting t = 1
2 gives the result.

This proposition fails to hold for p = 2, as Martinet [166] noticed: the field k = Q(
√
−105 ) has

Cl(k) ' (2, 2, 2) and finite class field tower. There is, however, an analogue for p = 4 due to Koch [147]
and Hajir [199]:

Proposition 1.9.18. Let k be an imaginary quadratic number field. If rank Cl4(k) ≥ 3, then k has
infinite 2-class field tower.

The corresponding result for real quadratic number fields was obtained by Maire [209]:

Proposition 1.9.19. Let k be a real quadratic number field. If rank Cl4(k) ≥ 4, then k has infinite
2-class field tower.

For other refinements of (1.8) for certain Galois extensions of Q, see [207], where e.g. the following
result is proved using Thm. 1.9.15:

Proposition 1.9.20. Let k be a cyclic cubic extension of Q, and let p ≥ 5 be a prime. If rank Clp(k) ≥ 4,
then k has infinite p-class field tower.

Besides class field towers of quadratic number fields, those of cyclotomic number fields have been
studied extensively. Sufficient criteria for the `-class field of Q(ζm) to be infinite have been given by
Furuta [159], Cornell [173], and Schoof [179]. Wingberg [191] found that the p-class field tower of
k = Q(ζp) is infinite if p - h(k+) and Clp(k) has rank ≥ 3, and he gave a sufficient criterium in the case
rank Clp(k) = 2.

Often one can obtain better results by applying the inequality 1.9.13 not to the base field k but to
one of its unramified extensions. Martinet [166], for example, observed the following

Proposition 1.9.21. Let K/k be a cyclic extension of prime degree p; let t and u denote the number
of finite and infinite primes of k ramifying in K/k. Moreover, let r denote the number of all inifinite
primes of k and put δk = 1 if ζp ∈ k, and δk = 0 otherwise. Then K has an infinite p-class field tower if

t ≥ r + δk + 2− u+ 2
√
p(r − u/2) + δk.
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Another result in this direction was given by Schoof [179]:

Proposition 1.9.22. Let K/k be a cyclic extension of prime degree p, and let ρ denote the number of
finite and infinite primes ramifying in K/k. Then the p-class field tower of K is infinite if

ρ ≥ 3 + rankpEk/H + 2
√

rankpEK + 1.

Here H is the subgroup of Ek consisting of units which are norms of elements from K, and rankpG
denotes the p− rank of G/Gp.

These ideas were used by Martinet [166], Schmithals [170], and Schoof [179] to construct fields with
infinite 2-class field tower and small discriminant. Note, however, that the construction of Matsumura
[165] is incorrect: his error occurs in his proof of Lemma 4: he considers an unramified cyclic extension
k/M of odd relative degree `, a prime ideal p in Ok, and a congruence ε ≡ −1 mod p. Then he takes the
norm to M and concludes that Nε ≡ N(−1) mod N(p): but this is only allowed if p is totally ramified in
k/M . In fact, here is a counterexample to his Theorem 1: Take p = 17, q = −23, ` = 3; his claim is that
the compositum K of Q(

√
−23,

√
17) and the cubic field of discriminant −23 has an ideal class group

with subgroup (2, 2). However, Cl(K) ' Z/7Z by direct computation (see our Tables in the appendix,
where the class field tower of Q(

√
−17 · 23 ) is given).

This approach suggests the following question: suppose that k has an infinite p-class field tower. Does
there exist a finite subextension K ⊂ k∞(p) such that K satisfies (1.8)? If this is true, then the p-ranks
of the class groups in the p-class field tower should grow; in [198], Hajir showed that for fields satisfying
(1.8) the p-ranks of the class groups in the tower tend to infinity:

Theorem 1.9.23. For a number field and a prime p, put d = rankClp(k) and r = d+dimpEk/NK/kEK ;
if d2 ≥ 4r, then

(a) Γ = Gal (k∞(p)/k) is a pro-p group which is not p-adic analytic;

(b) limm→∞ rank Clp(km(p)) =∞.

Part (a) contains the theorem of Golod and Shafarevic as a special case, since all finite p-groups are
p-adic analytic. Weaker results in this direction have been obtained before by Furuta [159] and Shirai
[164]. Hajir also established an upper bound on the p-ranks of class groups in the class field tower by
improving slightly on an inequality due to Iwasawa:

Proposition 1.9.24. Let K/k be an unramified p-extension. Then

rank Clp(K)− 1 ≤ (K : k)(rankClp(k)− 1). (1.11)

Hajir gave examples with n prime where we have equality in (1.11). The inequality can also be used to
show that constructing infinite 2-class field towers of imaginary quadratic number fields k whose 2-class
group have rank 2 is not too easy: if K/k is an unramified 2-extension such that K satisfies (1.8) then
(K : k) ≥ 8.

Fontaine and Mazur came forward with the following

Conjecture 1. Let k be a number field and put K = k∞(p). If (K : k) is infinite, then Gal (K/k) is a
pro-p group which is not p-adic analytic.

See Boston [185, 197], Hajir [198] and Nomura [200] for proofs of this conjecture in special cases. The
arithmetic side of the conjecture says that the p-ranks of the class groups in the p-class field tower of k
are bounded if and only if the p-class field tower terminates.

Another generalization of the theorem of Golod-Shafarevic is due to Maire [206]: Let S and T denote
finite sets of primes of a number field k; a T -S-extension is an extension of number fields such that the
primes in S split completely, and such that those in T are at most tamely ramified. He then develops
criteria of Golod-Shafarevic-type for infinite T -S-towers. By putting T = ∅ and S = {p : p | ∞} he is
able to construct number fields with infinite 2-class field tower in the strict and finite 2-class field tower
in the wide sense.
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1.9.3 Odlyzko Bounds

Exploiting an idea of Stark [546, 547], Odlyzko [548, 551, 552, 553] proved lower bounds for discriminants
which were considerably stronger than those obtained using geometry of numbers by Minkowski. Since
this topic has been surveyed by Poitou [554] and Odlyzko [559], we will be very brief here.

Minkowski proved the following: if K is an algebraic number field of degree n = r + 2s, where r
denotes the number of real and s the number of pairs of complex embeddings, then every ideal class of
Cl(K) contains an integral ideal a such that

NK/Qa <
n!
nn

( 4
π

)s√
d , where d = |discK|.

Since every integral ideal has norm ≥ 1, this implies

|discK| ≥
(π

4

)2s(nn
n!

)2

.

If we introduce the root discriminant rdK of K by rdK = |discK|1/n (it was called ‘Differentenwert’ by
Scholz in [545]), then this implies that, asymptotically,

rdK > (7.3)r/n(5.8)2s/n.

Artin and Hasse cherished the dream that an improvement of the Minkowski bound might lead to a proof
that rdK 7−→ ∞ as n 7−→ ∞; this would have settled the class field tower problem positively, i.e. it would
imply that the class field tower of every number field eventually terminates.

Let dn denote the root discriminant of the number field(s) of degree n with minimal discriminant;
then Scholz noticed that the example Q( n

√
2 ) gave dn < 2n. By constructing a family of metabelian

extensions (which can be identified with subfields of Hilbert class fields of cyclotomic fields) he was able
to show that dn < (log n)2; he also showed that abelian extensions of Q satisfied dn ≥ cn log logn

logn for some
constant c > 0.

Let us be a bit more precise; write n = r + 2s and consider the set K of number fields K of degree
divisible by n such that rK/r = sK/s, where (K : Q) = rK + 2sK . Then we define α(r, s) = lim inf d1/n

n ,
where the lim inf is over all fields in K. The results of Odlyzko show that

α(r, s) ≥ (22.3)2s/n(60.8)r/n unconditionally, and
α(r, s) ≥ (44.7)2s/n(215.3)r/n assuming the truth of GRH.

Martinet [556] showed that the field K = Q(ζ11 + ζ−1
11 ,
√
−46 ) has an infinite 2-class field tower. This

shows that dn ≤ 92.3 for all n = 5 · 2m, m ≥ 1. Incidentally, we don’t know an answer to the following

Question 1. Is dp bounded as p 7−→ ∞, where p is prime?

1.9.4 Galois groups of Class Field Towers

Let k denote a quadratic number field, and let d = d1 . . . dt be the factorization of d = disc k into prime
discriminants; let k(1,2) = k+

gen denote the genus class field of k in the strict sense, and define k(2,2) to be
the central class field of k(1,2)/Q. For prime discriminants dj , write d = d′dνj (ν ∈ {0, 1}) and define the
symbol [d, dj ] by

(−1)[d,dj ] =
(d′
p

)
,

where p is the unique prime dividing dj .
For 2-groups Γ, define Γ(1,2) = Γ2Γ′, Γ(2,2) = Γ′2[Γ,Γ′] etc. Fröhlich (see [286] for a modern

presentation of the original proof) showed

Theorem 1.9.25. Let k be a quadratic number field, and let d = d1 · · · dn be the factorization of d = disc k
into prime discriminants. Let Γ denote the Galois group of k∞(2) (k∞(2) being the union of all fields in the
2-class field tower of k). Then there is an exact sequence

1 −−−−→ R −−−−→ F −−−−→ Γ −−−−→ 1,
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where F/R is the pro-2-group with generators s1, . . . , sn−1, and defining relations

n∏
1≤j≤n,j 6=i

(s21s
2
j [si, sj ])

[q1,qj ] ∈ Γ(2,2).

As a corollary of Fröhlich’s result, Koch [147] obtained

Theorem 1.9.26. Let K = k(2,2); then the Galois group Γ = Gal (K/k) is generated by t− 1 automor-
phisms σ1, . . . , σt−1 subject to the following relations:

i) Γ(2,2) = 1;

ii)
∏t−1
ν=1(σ

2
ν [σν , σµ])

[dν ,dµ] = σ
2[d,dµ]
µ for µ = 1, 2, . . . , t− 1;

iii)
∏t−1
ν=1 σ

2[dν ,dt]
ν = 1.

From this theorem Koch derived the following corollary:

Proposition 1.9.27. Let k be a quadratic number field such that Cl+2 (k) ⊇ (4, 4); then there exists an
extension K/k of degree 32 which is unramified outside ∞ and with Galois group Gal (K/k) ' D4f(4, 4).

An analogous result for p-class fields (p odd) was found by Nomura [101]:

Proposition 1.9.28. Let k be a quadratic number field or a quadratic extension of an imaginary quadratic
number field. Moreover, let p be an odd prime, and assume that k 6= Q(

√
−3 ) if p = 3. If rank Clp(k) ≥ 2,

then there exists an unramified normal extension K/k with Galois group Gal (K/k) ' H(p3), where

H(p3) = 〈x, y : [x, y] = z, xp = yp = zp = 1, [x, z] = [y, z] = 1〉.

Nomura also proved a similar theorem for cyclic cubic ground fields:

Proposition 1.9.29. Let k be as above, assume that p is an odd prime ≡ −1 mod 3, and let K/k
be a cyclic cubic extension. If p | h(K), then there exists an unramifed normal extension M/K with
Gal (M/K) ' H(p3).

The corresponding result for p = 2 was proved by Bachoc and Kwon [527] and Couture and Derhem
[460]:

Proposition 1.9.30. Let k be a cyclic cubic number field, and suppose that Cl2(k) ' (2, 2). Then there
exists a normal extension K/k with Gal (K/k) ' H8 which is unramified outside ∞.

In 1993, Nomura [190] found the following generalization:

Proposition 1.9.31. Let p and ` denote distinct odd primes, and let f denote the smallest integer ≥ 1
such that pf ≡ 1 mod `. If f is even, and if K/k is a finite `-extension of number fields such that p | h(K),
then p divides the class number of the Hilbert p-class field of K.

The Galois groups of terminating 2-class field towers of quadratic number fields have been studied a
lot in recent years (see [429], [460], [189], [463], [193], [215], [214], [202]). Some of the results obtained
for imaginary quadratic base fields are collected in Theorem 1.9.32 and Table 1.

Theorem 1.9.32. Let G be a 2-group such that G′ is cyclic. Then G occurs as Gal (k2/k) for an
imaginary quadratic number field k only if G is one of the groups listed in Table 1.5. More exactly,
Gal (k2/k) ' G for these G if and only if disc k (and possibly some unit) satisfy the conditions (∗)
in Table 1. As usual, p, p′ denote primes ≡ 1 mod 4, q, q′, q′′ are primes ≡ 3 mod 4, εd denotes the
fundamental unit of Q(

√
d ), and h2(d) its 2-class number. In all cases we have k2 = k3.
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Table 1.5:

disc k conditions G

d d < 0 prime 1
dd′ d < 0, d′ > 0 prime, (2m) 2m = h2(k)

dd′d′′ d, d′, d′′ < 0 prime (2, 2m) 2m = h2(k)/2
−rpp′ (p/p′) = (r/p) = (r/p′) = −1 H8

−rpp′ (p/p′) = 1, (r/p) = (r/p′) = −1 Dm, m = 2h2(pp′)
Nεpp′ = +1 m ≥ 4

−rpp′ (p/p′) = 1, (r/p) = (r/p′) = −1, Hm, m = 4h2(pp′)
Nεpp′ = −1 m ≥ 16

−rpp′ (r/p) = +1, (p/p′) = (r/p′) = −1 m = 4h2(−rp)
−4pp′ p ≡ 1, p′ ≡ 5 mod 8, (p/p′) = −1 SDm m = 4h2(−4p)
−4pp′ p ≡ p′ ≡ 5 mod 8, (p/p′) = −1 M4m m = h2(k)/2
−4pp′ p ≡ p′ ≡ 5 mod 8, (p/p′) = +1 MC−m 2m = h2(pp′)

Nεpp′ = −1
−4pp′ p ≡ p′ ≡ 5 mod 8, (p/p′) = +1, MC+

m,t 2m = h2(k)/2
Nεpp′ = +1 2t = h2(pp′)

−4pp′ p ≡ 1, p′ ≡ 5 mod 8, Γ1
m,t 2m = h2(k)/2

(p/p′) = +1, (p/p′)4(p′/p)4 = −1 2t = h2(−4p)
−rpp′ (p/p′) = (r/p) = 1, Γ2

m,t 2m = h2(k)/2
(r/p′) = (p/p′)4(p′/p)4 = −1 2t = h2(−rp)

Table 1.6:

group presentation order # M(G)
Dm 〈a, b : am = b2 = 1, [a, b] = a−2〉 2m 2
H4m 〈a, b : am = b2 = −1, [a, b] = a−2〉 4m 1
SD4m 〈a, b : a2m = b2 = 1, [a, b] = am−2〉 4m 1
M4m 〈a, b : am = b2 = −1, [a, b] = −1〉 4m 1
MC−m 〈a, b : b2

m+1
= 1, a4 = b2

m

, a−1ba = b−1〉 2m+3 1
MC+

m,t 〈a, b : a2t+1
= b2

m

= 1, b−1ab = a−1〉 2m+t+1 2
Γ1
m,t 〈a, b : a4 = b2

m

= 1, c = [a, b], 2m+t+1 2
a2 = c2

t−1
, [a, c] = c2, [ab, c] = 1〉

Γ2
m,t 〈a, b : a4 = b2

m+1
= 1, c = [a, b], 2m+t+1 2

a2 = b2
m

= c2
t−1
, [a, c] = c2, [ab, c] = 1〉

Table 1.7:

disc k factors Cl2(k)
−1015 −7 · 5 · 29 (2, 8)
−1240 −31 · 8 · 5 (2, 4)
−1443 −3 · 13 · 37 (2, 4)
−1595 −11 · 5 · 29 (2, 8)
−1615 −19 · 5 · 17 (2, 4)
−1624 −7 · 8 · 29 (2, 8)

disc k factors Cl2(k)
−1780 −4 · 5 · 89 (2, 4)
−2035 −11 · 5 · 37 (2, 4)
−2067 −3 · 13 · 53 (2, 4)
−2072 −7 · 8 · 37 (2, 8)
−2296 −7 · 8 · 41 (8, 2)
−2379 −3 · 13 · 61 (4, 4)
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Table 1.8:

G disc k #G G disc k #G
(2, 2) −84 4 M128 −7076 128
(2, 4) −264 8 MC−2 −580 32
(2, 8) −399 16 MC+

3,1 −1220 32
(2, 16) −1239 32 MC+

2,2 −2020 32
(2, 32) −5271 64 MC+

4,1 −2180 64
D4 −408 8 Γ1

2,2 −4820 32
D8 −1515 16 Γ1

2,3 −820 64
H8 −120 8 Γ1

3,2 −884 64
H16 −195 16 Γ1

3,3 −6068 128
H32 −2712 32 Γ1

4,2 −8980 128
H64 −6915 64 Γ2

2,2 −952 32
SD16 −340 16 Γ2

2,3 −915 64
SD32 −2132 32 Γ2

3,2 −663 64
SD64 −5140 64 Γ2

2,4 −4715 128
M16 −260 16 Γ2

3,3 −2296 128
M32 −740 32 Γ2

4,2 −5784 128

Table 1.9:

M16 16.011 Γ2 d
M32 32.022 Γ2 k
MC−2 32.032 Γ3 f
MC+

3,1 32.021 Γ2 j2
MC+

2,2 32.029 Γ3 d1

MC+
4,1 64.041 Γ2 w2

Γ1
2,2 32.028 Γ3 c2

Γ1
3,2 64.063 Γ3 n2

Γ1
2,3 64.139 Γ8 c2

Γ2
2,2 32.031 Γ3 e

Γ2
2,3 64.066 Γ8 e

Γ2
3,2 64.142 Γ3 p

In Table 1.5, the symbols D, H, SD and M denote dihedral, quaternion, semidihedral and modular
groups; presentations for the groups can be found in Table 1.6.

In Table 1.8 we give the smallest examples of imaginary quadratic fields and given group Gal (k2/k);
among the fields with |disc k| ≤ 2379, Table 1.7 gives those which have noncyclic Cl2(k1).

The discriminants 2379 < |disc k| < 8000 such that Cl2(k1) is noncyclic are
−2392, −2715, −2755, −2788, −2840, −2847, −2915, −2968, −3160, −3335, −3435, −3560, −3604,
−3783, −3939, −4251, −4495, −4823, −4895, −4964, −5015, −5135, −5235, −5335, −5336, −5555,
−5576, −5795, −6040, −6052, −6104, −6123, −6215, −6307, −6328, −6355, −6392, −6596, −6747,
−6771, −6935, −7059, −7208, −7503, −7511, −7512, −7527, −7535, −7544, −7579, −7640, −7672,
−7684, −7960.

Finally, Table 1.9 gives isomorphisms between our groups and those in the tables of Senior and Hall.

1.9.5 Reflection Theorems

In this section we will deal with relations between the p-rank of ideal classes in certain number fields.
The first result in this direction (which is a strengthening of Kummer’s classical observation that ` | h+

implies ` | h−) is due to Hecke [304]:

Proposition 1.9.33. Let ` be an odd prime, k = Q(ζ`), and let Cl+` (k) and Cl−` (k) denote the plus and
the minus part of Cl`(k). Then rank Cl+` (k) ≤ rank Cl−` (k).
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Next Scholz [307] and Reichardt [310] discovered a connection between the 3-ranks of class groups of
certain quadratic number fields:

Proposition 1.9.34. Let k+ = Q(
√
m ) be a real quadratic number field, and put k− = Q(

√
−3m ).

Then the 3-ranks r+3 and r−3 of Cl(k+) and Cl(k−) satisfy the inequalities r+3 ≤ r
−
3 ≤ r

+
3 + 1.

Lepoldt later generalized this to p-ranks and called his result the ”Spiegelungssatz”, whence the title
of this section.

Top [365] gave a lower bound for r+3 + r−3 in terms of the rank of a certain elliptic curve; Brinkhuis
[357, 367] discovered connections between normal integral bases in cubic Hilbert class fields and the
difference r+3 −r

−
3 . A completely different proof of Prop. 1.9.34 using connections between 3-class groups

of quadratic number fields and Selmer groups of elliptic curves based on ideas of Frey [330] was given by
Nekovar [361]; see also Schaefer [371].

The fact that something analogous to Prop. 1.9.34 holds for the 4-rank of the ideal class groups of
Q(
√
m ) and Q(

√
−m ) was not noticed until 1970, when Damey and Payan [317] proved

Proposition 1.9.35. Let k+ = Q(
√
m ) be a real quadratic number field, and put k− = Q(

√
−m ).

Then the 4-ranks r+4 and r−4 of Cl+(k+) and Cl+(k−) (ideal class groups in the strict sense) satisfy the
inequalities r+4 ≤ r

−
4 ≤ r

+
4 + 1.

Other proofs are due to Halter-Koch [353], Gras [323] and Uehara [360]; for a generalization, see Oriat
[344].

Let k be a quadratic number field with discriminant d, and let r denote the 3-rank of its ideal class
group. As we have already noted above, Hasse [10] used class field theory to show that there are exactly
1
2 (3r − 1) non-conjugate cubic number fields K with discriminant d, and that the extensions Kk/k give
all the cubic subfields of the Hilbert class field k1 of k. Callahan [325] discovered that the 3-ranks of k
and K are related:

Proposition 1.9.36. Let k be a quadratic number field with discriminant d, and suppose that its class
number is divisible by 3. Let K be one of the cubic extensions of Q with discriminant d, and let r2 and
r3 denote the 3-ranks of Cl(k) and Cl(K), respectively. Then r3 = r2 − 1.

Callahan could only prove that r2 − 2 ≤ r3 ≤ r2 − 1, but conjectured that in fact r3 = r2 − 1. This
was verified later by G. Gras and Gerth [336]. Another proof is due to Bölling [352], who later [356]
generalized this result to dihedral extensions of prime degree `:

Proposition 1.9.37. Let k be a quadratic number field with discriminant d, and suppose that its class
number is divisible by an odd prime `. Each unramified cyclic extension of degree ` over k is a dihedral
extension of Q; let K be one of its subfields, and let r2 and r` denote the `-ranks of Cl(k) and Cl(K),
respectively. Then r2 − 1 ≤ r` ≤ (r2 − 1) `−1

2 .

A similar situation occurs for the 2-class groups of cyclic cubic fields k (Heilbronn [319]):

Proposition 1.9.38. Let k be a cyclic cubic field with discriminant d, and let r denote the 2-rank of
Cl(k); then r ≡ 0 mod 2 (cf. Inaba [232] or Gras [323]), and there exist exactly 1

3 (2r−1) quartic fields K
with discriminant d, and the extensions Kk/k give all unramified V4-extensions which are normal over
Q. The normal closure N of K/Q has Galois group Gal (N/Q) ' A4, the alternating group of order 12.

The following pretty result on 3-ranks of certain pure cubic fields and their normal closure is due to
Kobayashi [324] (see also Gerth [331]):

Proposition 1.9.39. Let m be a cubefree integer not divisible by any prime p ≡ 1 mod 3, and put
k = Q( 3

√
m ) and K = k(

√
−3 ). Then rank Cl3(K) = 2 · rank Cl3(k).

It was generalized subsequently by G. Gras [326] to

Proposition 1.9.40. Let K be a normal extension of Q with Gal (K/Q) ' S3, and let k denote its
quadratic subfield. If no prime p ∈ Spl(k/Q) ramifies in K/k, and if 3 - h(k), then rank Cl3(K) =
2 · rank Cl3(k).
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Two more elementary reflection theorems are

Proposition 1.9.41. Let k be a totally real number field with odd class number. Let K/k and L/k be
totally complex quadratic extensions, and assume that K/k is unramified outside∞. Then rank Cl2(K) ≤
rank Cl2(L).

Proof. Let H be the maximal unramified elementary abelian 2-extension of K; then rankCl2(K) = (H :
k). We claim that H/k is also an elementary abelian 2-extension. In order to see this, let E/K be a
quadratic subfield of H/k; we have to show that Gal (E/k) ' (2, 2). First we notice that E/k is normal:
if not, let σ denote the non-trivial automorphism of K/k; then EEσ is the normal closure of E/k, and we
have Gal (EEσ/k) ' D4, the dihedral group of order 8. Let K ′ be the quadratic subfield of EEσ/k over
which EEσ is cyclic. ThenK ′ must be totally complex (if not, there would be an infinite prime completely
ramifying in EEσ/K ′), hence the third quadratic subfield K ′′ in EEσ/k is totally real. Moreover, K ′/k
and K ′′/k are unramified at the finite primes (because EEσ/k is), hence K ′′/k is a quadratic extension
which is unramified everywhere. This contradicts the fact that the class number of k is odd.

Since there are only two groups of order 4, it is sufficient to show that E/k cannot be cyclic. But this
is clear, because its quadratic subextension K/k is CM.

Proposition 1.9.42. Let k be a totally real number field with odd class number. Let K/k and L/k be
totally complex quadratic extensions, and assume that there is exactly one prime ideal ramified in K/k.
If there is at least one prime ideal ramified in L/k, then rank Cl2(K) ≤ rank Cl2(L).

1.10 Unsolved Problems

Conjecture 2. For every n ≥ 2, there exist infinitely many primes p ≡ 1 mod 4 such that Cl2(k) '
Z/2nZ, where k = Q(

√
−p ) is an imaginary quadratic number field with discriminant −4p.

This can be proved for n = 2 and n = 3; moreover, the existence of governing fields in these cases
shows that the primes p ≡ 1 mod 4 such that h(−4p) ≡ 2n mod 2n+1 have Dirichlet density 2−n−2.
Computational data suggest that this continues to hold for n = 4, 5, . . ., but a proof seems out of reach.

I only recently noticed that the following ‘conjecture’ has already been proved by Bölling; nevertheless,
the questions for general base fields are still open:

Conjecture 3. Let k be a quadratic number field, and suppose that p is an odd prime such that p | h(k).
The unramified cyclic p-extensions L/k are normal with Galois group Gal (L/Q) ' Dp, the dihedral group
of order 2p. Let K be one of its subfields of degree p, and let r2 and rp denote the p-rank of Cl(k) and
Cl(K), respectively. Then

r2 − 1 ≤ rp ≤
p− 1

2
(r2 − 1).

The proof of the upper bound is rather elementary, but the lower bound seems to be quite difficult to
prove. Actually, the upper bound continues to hold if we replace Q by a field F with class number prime
to p; the conjecture for the lower bound has to be replaced by r2 − 1− e, where e denotes the p-rank of
EF /NK/FEK , EF and EK being the unit groups of F and K, respectively. Of course we have e = 0 if
the unit rank of F is 0, i.e. if F = Q or F is imaginary quadratic; this blends in nicely with the results
of Nomura [101].

Question 2. Given n ∈ N and a prime p, is there a quadratic number field whose p-class field tower
terminates after exactly n steps?

For p = 2, 3 there exist examples with n ≤ 2.

Question 3. Suppose that K/k is a nontrivial unramified p-extension such that k ⊆ K ( k1
(p) ( k2

(p).
Does K1

(p) = k2
(p) imply that k2

(p) = k3
(p) = . . . = k∞(p)? Assume in addition that (K : k) = p; is it true that

K1
(p) = k2

(p) implies that hp(L) = hp(k) for all L ⊂ k1
(p) with K 6= L and (L : k) = p?

43



Question 4. Let k be a number field and assume that k ⊆ K ( L ⊂ k∞(p) (i.e. K ( L are subextensions
of the p-class field tower of k. Then is it true that K1

(p) = L1
(p) implies that K1

(p) = k∞(p)?

Herbrand’s Theorem gives all elementary abelian unramified `-extensions of Q(ζ`) in a very explicit
way if ` - h+(`).

Question 5. Is it possible to give a similar explicit description of the capitulation in these extensions?
If it is, does Ribet’s construction yield similar answers?

The following conjecture is due to Martinet [166, 558]:

Conjecture 4. If k is an imaginary quadratic field such that rank Cl2(k) ≥ 4 then k has infinite 2-class
field tower.

In a similar vein we ask

Question 6. Do there exist imaginary quadratic number fields k with Cl2(k) ' (4, 4), (2, 2, 4) or (2, 4, 4)
and finite 2-class field tower?

Question 7. Let k be a number field with p-class field tower k1
(p) ⊆ k2

(p) ⊆ . . ., and suppose that
rank Clp(kn(p)) ≥ rank Clp(kn+1

(p) ). Does this imply that the p-class field tower of k terminates?

Question 8. Let K/k be a finite extension of number fields. Are there any simple and nontrivial criteria
for the inequality rank Clp(K/k) ≤ rank Clp(K) to be sharp?

Question 9. If k is a number field with odd class number, then the ambiguous class number formula
gives the rank of Cl2(K) for quadratic extensions K/k. What can be said if h(k) is even? If, e.g.,
Cl2(k) ' Z/2Z and Am(K/k) ' Z/2Z, and if K/k is ramified, then it can be shown that

Cl2(K) '
{

Z/2nZ (n 6= 2) or (2, 2) if κ = 1;
Z/2nZ (n ≥ 1) if κ 6= 1.

More general results would be welcome.

Kobayashi’s result 1.9.39 begs the question what’s happening for split primes. Numerical experiments
with pure cubic fields suggest the following conjecture:

Conjecture 5. Let p ≡ 1 mod 3 be a prime, and let K = Q( 3
√
p ). Then Cl3(K) is cyclic, and if it

contains a cyclic subgroup of order 9 then p ≡ 1 mod 9.
Let L = K(

√
−3 ) be the normal closure of K. If p ≡ 4, 7 mod 9, then

Cl3(L) '
{

Z/3Z if (3/p)3 6= 1
(Z/3Z)2 if (3/p)3 = 1

If p ≡ 1 mod 9, then rankCl3(L) ∈ {1, 2}, whether (3/p)3 = 1 or not.

Question 10. What can be said about the covering tree of (2, 2n)?
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Chapter 2

The Construction of Hilbert `-Class
Fields

In this chapter we will refine and extend ideas of G. Gras [31, 37] concerning the construction of Hilbert
class fields. We will also show how to derive special cases of Leopoldt’s Spiegelungssatz from our results,
and present connections with the structure of the `-class group of Q(ζ`). Apart from [37], Oriat’s papers
[629] and [337] have been very helpful.

2.1 Decomposition into Eigenspaces

2.1.1 Idempotents

Although much of what follows actually holds in more general situations, we will assume in this section
that k/F is an abelian extension such that the exponent of G = Gal (k/F ) divides `− 1. This will allow
us to view F`-characters of G as homomorphisms: in fact, let Ĝ = Hom (G,F×` ); since expG | ` − 1, we
have Ĝ ' G. For every φ ∈ Ĝ define

eφ =
1
n

∑
σ∈G

φ(σ−1)σ,

where n = #G. We claim that the elements eφ ∈ F`[G] form a complete set of central idempotents in the
group ring F`[G]:

Proposition 2.1.1. The elements eφ have the following properties:

1.
∑
φ∈ bG

eφ = 1; 2. eφeψ =
{

0 if φ 6= ψ;
eφ if φ = ψ; 3. σeφ = φ(σ)eφ.

Proof. This is proved by straightforward verification:

1. ∑
φ∈ bG

eφ =
1
n

∑
φ∈ bG

∑
σ∈G

φ(σ−1)σ =
1
n

∑
σ∈G

σ
∑
φ∈ bG

φ(σ−1) = 1,

where we have used the well known property
∑
φ∈ bG φ(σ−1) =

{
n, if σ = 1,
0, if σ 6= 1. .

2.
eφeψ =

( 1
n

∑
σ∈G

φ(σ−1)σ
)( 1

n

∑
τ∈G

ψ(τ−1)τ
)
.
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Reorganizing the sum and substituting σ = ρτ−1 yields

eφeψ =
1
n2

∑
ρ

φ(ρ−1)ρ
∑
τ

(ψ−1φ)(τ) =
1
n
eφ
∑
τ

(ψ−1φ)(τ).

This last sum, however, vanishes whenever φ 6= ψ, and equals n if φ = ψ. This proves our claim.

3.
σeφ =

1
n

∑
τ

φ(τ−1)στ = φ(σ)
1
n

∑
τ

φ((στ)−1)στ = φ(σ)eφ.

This implies that every F`[G]-module A can be written as a direct sum of submodules A(φ) = Aeφ : in
fact, the relation A = A

P
eφ shows that the A(φ) generate A, and the orthogonality of the idempotents

implies at once that the sum
A =

⊕
φ∈ bG

A(φ)

is direct. Since σeφ = φ(σ)eφ, we conclude that A(φ) = {a ∈ A : σ(a) = aφ(σ) for all σ ∈ G}. If we put
A(φ)⊥ =

⊕
ψ 6=φA(ψ), then clearly a ∈ A(φ)⊥ ⇐⇒ aeφ = 1.

If G is cyclic, then all φ ∈ Ĝ are powers of the character φ1 defined by mapping a generator of G to
a primitive nth root mod ` (recall that n | `− 1), which we will denote by r. In this case we often write
Ai = A(φi1).

2.1.2 Contribution of Subspaces

Next we will study the base change, i.e. we replace F by some extension L contained in k/F . To this end,
let U be the subgroup of G which corresponds to L by Galois theory, and let π : G −→ G/U denote the
canonical projection (our groups are abelian). If ψ is a character of G/U , then φ = ψ ◦ π is a character
of G such that Gφ ⊇ U . It is easy to see that in this way we get a bijection between the characters
of G/U and the characters of G whose kernels contain U . Extending this map linearly we get a map
π : F`[G] −→ F`[G/U ]. It is easily verfied that π(eφ) = eπ(φ).

Now put A = Ek = E(k)/E(k)`, and assume that φ ∈ Ĝ has kernel Gφ; let L be the fixed field of
Gφ. Then the subset of all elements of A(φ) which are invariant under U = Gal (k/L) form a submodule
which can be identified with EL(ψ), where EL = E(L)/E(L)` and where ψ ◦ π = φ.

In our applications, A will often be a subgroup of k×. Of course we want to know whether a certain
part A(φ) of A can be computed from the arithmetic of a subextension of k/F . To this end put Gφ =
kerφ = {σ ∈ G : φ(σ) = 1} and let kφ be the subfield of k fixed by Gφ. We can define a ’relative norm’
on A by Nφ : A −→ A : a 7−→

∏
σ∈Gφ

aσ. Clearly Nφ induces an isomorphism on A(φ). If, for example,
we take A = E(k) (the unit group of k), then E(φ) is generated by units of kφ (which is a nontrivial
observation only if Gφ 6= 1). Similarly, let A = C(k), the group of ideal classes of k whose order divides
`: then C(φ) is generated by ideal classes of kφ (Observe that we may identify Cl`(kφ) with its image in
Cl`(k) since the relative degree (k : F ) is not divisible by `).

2.1.3 Hilbert’s Satz 90

We will also need ’Hilbert’s Satz 90’:

Proposition 2.1.2. Let A be an F`[G]-module and suppose that G = 〈σ〉 is cyclic of order n | ` − 1.
Then aej = 1 if and only if a = bσ−r

j

for some b ∈ A.

Proof. Put Fi(X) = 1
n

∑n−1
ν=0 r

−νiXν ∈ F`[X]; then clearly Fi(σ) = ei. Since

Fi(rj) =
1
n

n−1∑
ν=0

r−νirνj =
1
n

n−1∑
ν=0

rν(j−i) = δij ,
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we conclude that Fi(X) is a constant times the product over all (X − rj) for j 6= i; evaluating the
coefficient of the highest term yields in fact that

Fi(X) =
1
n
ri
∏
j 6=i

(X − rj),

though this will not be needed in the sequel.
Now assume that aei = 1; then a =

∏
i 6=j a

ej . Since the ej = Fj(σ) have a common factor σ − ri, we
can write ej = (σ − ri)fj , and we find

a =
∏
i 6=j

aej =
(∏
i 6=j

afj

)σ−ri

.

The other direction is trivial, hence our claim follows.

Observe that e0 is essentially the norm, and that Prop. 2.1.2 shows that the norm of a is trivial iff
a = bσ−1. In fact, even E. Noether’s generalization of Hilbert 90 holds:

Theorem 2.1.3. Let δ : G −→ A be a map of a finite group G into a Z`[G]-module A. Suppose
that ` - n, where n = #G denotes the order of G, and assume that δ satisfies the Noether equations
δ(στ) = δ(σ)τδ(τ)φ(σ) for all σ, τ ∈ G. Then there exists an a ∈ A such that δ(σ) = aσ−φ(σ).

Proof. Define b =
∏
σ∈G δ(σ)−φ(σ)−1

. Then

bτ =
∏
σ∈G

(
δ(σ)τ

)−φ(σ)−1

=
∏
σ∈G

(
δ(στ)δ(τ)−φ(σ)

)−φ(σ)−1

= δ(τ)n
(∏

σ∈G δ(στ)
−φ(στ)−1

)φ(τ)

= δ(τ)nbφ(τ).

Let f be the multiplicative inverse of n in Z`; then a = bf has the desired properties.

Hilbert’s Satz 90 is of course contained as a special case in Thm. 2.1.3: in fact, every F`[G]-module
is a Z`[G]-module via the canonical projection Z` −→ Z`/`Z` ' F`. Now assume that a ∈ A⊥φ and define
a map δ : G −→ A by δ(1) = 1 and

δ(σi+1) = aS(i) for i ≥ 0, where S(i) =
i∑

j=0

σi−jφ(σ)j .

This is well defined because δ(σn) is an element of A⊥φ (since a is) which is killed by σ − φ(σ), i.e.
δ(σn) ∈ A⊥φ ∩ Aφ = 1. Moreover δ satisfies the Noether equations δ(στ) = δ(σ)τδ(τ)φ(σ), hence Thm.
2.1.3 shows that there exists an element b ∈ A such that a = δ(σ) = bσ−φ(σ).

2.2 Kummer Theory

2.2.1 The Kummer Pairing

We start by reviewing Kummer Theory. LetK/k/F be a tower of extensions with the following properties:

1. k/F is normal with finite Galois group G = Gal (k/F );

2. K/k is abelian of exponent m;

3. k contains a primitive mth root of unity ζ.
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In this situation, Kummer theory gives a bijection between normal extensions K/k of exponent m and
subgroups W = WK = {α ∈ k× : α1/m ∈ K}. We can make Gal (K/k) act on the elements ω = αk×m ∈
W/k×m by putting β = α1/m and observing that, for any τ ∈ Gal (K/k), we have τ(β)m = τ(α) = α =
βm; this implies that βτ−1 ∈ µm, where µm = 〈ζ〉 is the group of mth roots of unity, and we end up with
a (well defined(!)) map W/k×m ×Gal (K/k) −→ µm : 〈ω, τ〉 7−→ βτ−1. We claim that this is a pairing,
i.e. that the map is Z-bilinear. In fact, we find

〈ωa, τ〉 = (βa)τ−1 = (βτ−1)a and
〈ω, τa〉 = βτ

a−1 = (βτ−1)1+τ+...+τ
a−1

= (βτ−1)a.

Moreover, this pairing is perfect, i.e. the left and right kernels are trivial.
Next we observe that G = Gal (k/F ) acts on µm; it also acts naturally on W/k×m but we have to

make sure that 〈ωσ, τ〉 still makes sense: this is done by putting 〈ωσ, τ〉 = (βs)τ−1, where s is an extension
of σ to K/F . Since different choices of s will change βs by at most a root of unity (which is killed by
τ − 1), this is indeed well defined. If we make Gal (K/k) into a G-module by defining τσ = s−1τs (check
that this is well defined), then the actions on the three groups in our pairing are compatible:

〈ωσ, τσ〉 = (βs)τ
σ−1 = (βs)s

−1τs/βs = βτs/βs = (βτ−1)σ = 〈ω, τ〉σ.

Clearly K/F is normal if and only if G acts on W/k×m. In the special case where W/k×m = 〈ω〉
is cyclic we see that K/F is normal if and only if ωσ = ωφ(σ) for some φ(σ) ∈ (Z/mZ)×. The map
φ : G −→ (Z/mZ)× is easily seen to be a homomorphism, i.e. an element of Ĝ. There is a second
character G −→ (Z/mZ)× connected with the action of G on k/F , namely the cyclotomic character χ
defined by ζσ = ζχ(σ).

Now assume that K = k( m
√
ω ) is normal over F ; we want to compute σ−1τσ (note that this actually

stands for s−1τs, where s is any extension of σ to Gal (K/F )). We find

〈ωσ, τσ〉 = (βτ−1)χ(σ) = 〈ωχ(σ), τ〉 = 〈ω, τ〉χ(σ), as well as 〈ωσ, τσ〉 = 〈ωφ(σ), τσ〉 = 〈ω, τσ〉φ(σ).

Therefore
〈ω, τσ〉 = 〈ω, τ〉χ(σ)φ(σ)−1

= 〈ω, τχ(σ)φ(σ)−1
〉,

from which we conclude that σ−1τσ = τχ(σ)φ(σ)−1
. We have proved

Proposition 2.2.1. Let k/F be a normal extension such that k contains the mth roots of unity, and let
K = k( m

√
α ) be an extension of degree m. Then K/F is normal if and only if there exists a character

φ : Gal (k/F ) −→ (Z/mZ)× such that ωσ = ωφ(σ) for every ω = αk×m. In this case, we have σ−1τσ =
τχ(σ)φ(σ)−1

for all σ ∈ Gal (k/F ) and all τ ∈ Gal (K/k), where χ is the cyclotomic character. Thus
K/k/F is central if and only if φ = χ. If, in particular, k/F is cyclic, then K/F is abelian if and only
if r = 1 (i.e. k = F ) or φ = χ.

2.2.2 Eigenspaces of the Kummer Radical

Now suppose that K/F is normal, i.e. that G acts on W/k×m. If we pick any ω ∈ W then k( m
√
ω )/F

need not be normal. The problem we want to discuss is the following: can we choose some ωj ∈ W in
such a way that

a) the ωj are independent in W/k×m;

b) K is the compositum of the kj = k( m
√
ωj );

c) each kj is normal over F .

We will see that the answer is yes and that we can even compute the Galois groups of the extensions
kj/F .

Decomposing the G-module W/k×m into eigenspaces yields

W/k×m =
⊕
φ∈ bG

W (φ)/k×m.
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Then ω ∈ W (φ)/k×m satisfies ωσ = ωφ(σ). By Prop. 2.2.1 this implies that k( m
√
ω )/F is normal.

Moreover, we get
σ−1τσ = τχ(σ)φ(σ)−1

.

Since any extension 1 −−−−→ N −−−−→ Γ −−−−→ G −−−−→ 1 of finite groups splits if #N and #G =
(Γ : N) are coprime, we can choose extensions of the σ ∈ G so that they form a subgroup of Γ isomorphic
to G. This proves

Proposition 2.2.2. Suppose that G = S1 × . . . × Sq is a direct product of cyclic groups Si = 〈σi〉, and
assume that ni = #Si | `− 1. Then, for any ω ∈W (φ)/k×m, the extension L = k( m

√
ω ) is normal over

F with Galois group

Γ ' 〈σ1, . . . , σq, τ : σni
i = τm = 1, [σi, σj ] = 1, σ−1

i τσi = τa for a = χ(σi)φ(σi)−1〉.

In particular, Γ is abelian if and only if χ = φ.

This shows that the submodule W (χ) of W is the interesting one when it comes to constructing class
fields, for example. Therefore we would like to have a nice interpretation of W (χ); our next result shows
that W (χ) does not come from the contributions of the subextensions of k/F if k = F ′ = F (ζ`). This
means essentially that the information needed for the construction of class fields is not contained in the
subextensions of k/F .

In fact, let A be a G-module, and define A(F ′/L) for every subextension L of F ′/F as the kernel of
the norm map NF ′/L : A −→ A : a 7−→

∏
σ(a), where the product is over all σ ∈ G fixing L elementwise.

Proposition 2.2.3. Using the notation we have just introduced we have

A1 ⊆
⋂

F⊆L(F ′

A`(F ′/L).

Proof. Let r be a primitive nth root mod p and let σ denote the generating automorphism ζp −→ ζrp of
F ′/F . We know that A1 = {a ∈ A` : aσ = ar}. Let L be a subfield of F ′/F and put f = (L : F ), g = (F ′ :
L). Then L is the fixed field of σfr . Put t ≡ rf mod `; then NF ′/La = aS for S = 1 + t+ t2 + . . .+ tg−1,
and from tS ≡ S mod ` we deduce that ` | S (since t = 1 would imply L = F ′). This gives NF ′/La = 1,
i.e. a ∈ A`(F ′/L).

2.3 Construction of `-Class Fields

Let F be a number field which does not contain the `th roots of unity. In order to construct the `-class
field of F by Kummer theory we first adjoin ζ`, i.e. we put F ′ = F (ζ`). As in Chap. 1 we choose a basis
η0 = ζ`, η1, . . . , ηλ of EF ′/E`F ′ , then find generators b1, . . . , bf of `Cl(F ′) and set b`j = βjOF ′ . Finally we
form the group

E = 〈η0, . . . , ηλ, β1, . . . , βf 〉F ′
` ⊆ F ′×/F ′× `.

We know that the unramified cyclic extensions L′ = F ′(
√̀
ω) of F ′ are generated by the primary elements

ω ∈ E. Nevertheless just searching for primary elements in E is a bad idea for several reasons: first of
all, because there is a better method, and second, because we eventually want to apply our method to
the construction of ray class fields, where we may want ramification at `.

So we would like to make the group E as small as possible before searching for primary numbers in it;
one way to do this is to exclude some ω ∈ E which cannot give abelian extensions over F . For example,
it is clear that any ω ∈ E∩F×/F ′× ` satisfies ωσ = ω, and therefore F ′(

√̀
ω)/F is not abelian (cf. Prop.

2.2.1). Our aim is therefore to try to eliminate the subgroup of E ”coming from F”. This is of course
achieved by decomposing E into eigenspaces. Since F ′/F is cyclic, we use the notation Aj = A(φj),
where φ is some fixed generator of Ĝ.

First we consider the unit group E(F ′) or, more exactly, its image E in the factor group F ′
×
/F ′

× `.
Note that E = E(F ′)F ′× `/F ′× ` ' E(F ′)/E(F ′)`. This yields

E =
n−1⊕
i=0

Ei ' E(F )/E(F ′)` ⊕
n−1⊕
i=1

Ei and E(F ′/F ) =
n−1⊕
i=1

Ei.
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Next we decompose the subgroup C = `Cl(F ′) of ideal classes of order dividing `; clearly we have
C =

⊕
Ci (with Ci = Cei). Now ne0 =

∑
a σ

−1
a =

∑
a σa is the algebraic norm; since ((F ′ : F ), `) = 1,

the norm NF ′/F : Cl`(F ′) −→ Cl`(F ) is surjective and the conorm j : Cl`(F ) −→ Cl`(F ′) is injective on
the `-class group, hence we can identify C0 and `Cl(F ). This means that we have

C = `Cl(F ′) ' `Cl(F )⊕
n−1⊕
i=1

Ci and `Cl(F ′/F ) '
n−1⊕
i=1

Ci.

Now we can give the “correct” definition of E ⊆ F ′
×
/F ′

× `: for an ideal class c ∈ Ci, choose an integral
ideal a prime to ` such that c = [a]. Then a` = (α) for some α ∈ OF ′ , and aσ = ξar

i

for some ξ ∈ F ′.
This implies that (α)σ = (α)rξ`, hence there exists a unit ε ∈ E(F ′) such that ασ−r

i

= εξ` (note that
we do not need to know E(F ′) here). Applying ei to this equation we get εei ∈ E(F ′)`, and Hilbert 90
gives us a unit η ∈ E(F ′) such that ε ∈ ησ−ri

E(F ′)`. Therefore that β = αη−1 generates the ideal a`

and satisfies βσ−r
i ∈ F ′× `.

This shows the following: suppose we have an ideal class c = [a] ∈ Ci. Then we may choose a generator
β of a` in such a way that β ∈ F ′i . If we do this for a set of ideal classes generating C =

⊕
Ci then we

get a subgroup C =
⊕
Ci of F ′×/F ′× `, with the additional property that Ci ' Ci. Put E = E ⊕ C; then

E is also an F`[G]-module, hence

E =
n−1⊕
i=0

Ei,

and it is clear that an extension F ′(
√̀
ω) is abelian over F if and only if ω ∈ E1 (again see Prop. 2.2.1).

From what we have just proved we deduce that rankEi = rank Ei + rank Ci; in fact we have Ei ' Ei ⊕ Ci
for every 0 ≤ i ≤ n− 1.

We therefore propose the following algorithm for constructing the Hilbert `-class field of a number
field k:

1. adjoin the `th roots of unity to form k′ = k(ζ`);

2. compute the subgroup E(χ) of an `-maximal unit group;

3. compute the subgroup C(χ) of the `-class group of k′;

4. form E(χ) and compute Ẽ(χ);

5. use the formulas given by Gras [31] and Odai [89] to compute generating polynomials for the
unramified cyclic `-extensions of k.

Remark 2. For the construction of a unit η such that ε = ησ−r
i

we do not need to know E(F ′).

Remark 3. For an efficient method to compute Ẽi from Ei, see [29].

Remark 4. It is possible to compute C1 without having to compute the whole class group of F ′: let P be
a prime ideal in F ′ such that c = [P] ∈ C1. Then the prime ideal p = P ∩ OF below P splits completely
in F ′/F (otherwise c would be in the oldclass group (i.e. the one coming from the decomposition field)).
Moreover, the order of P in Cl`(F ′) is `, and Pσ−r ∼ 1 in Cl`(F ′). Thus, C1 is generated by all prime
ideals P whose norm is below, say, the Minkowski bounds and who enjoy the properties listed above.

Remark 5. One should examine the current algorithms for computing units of algebraic number fields and
try to modify them in such a way that they give E(χ) without having to compute all of E = E(K)/E(K)`.

Example 2.3.1. Suppose that K is a cubic number field with class number divisible by ` = 3. If K is
totally real, then E1 = 〈ζ`〉, since here K is the maximal real subfield of K ′, and we know that Hasse’s
unit index q(K) = (EK′ : WK′EK) divides 2, i.e. WK′EK is a 3-maximal subgroup of the unit group of
K ′ (this shows incidentally that the construction of the cubic unramified extension is more difficult for
complex cubic fields).
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In the special case where C1 = Cl3(K ′/K) is trivial we can conclude that the Hilbert 3-class field of
K ′ must be K ′( 3

√
ζ3 ), and therefore that the Hilbert 3-class field of K is simply KL, where L is the cubic

field of discriminant 81 (i.e. the cubic subfield of Q(ζ9).
In [119], the authors compute the Hilbert class field for all 267 real cubic fields with discriminant

< 100.000 and class number 3 and write that for 49 of these fields it is sufficient to consider Kummer
extensions generated by units of K ′. This shows that for these fields the Hilbert class field coincides with
the genus class field. A search for real cubic fields with discriminant < 100.000 and nontrivial genus class
field revealed that there are at least 195 such fields (I didn’t check conductors > 127); except for six fields
with class number 6, all of them have class number 3. In particular, for 189 of the 267 fields examined
in [119] the Hilbert class field coincides with the genus class field.

Checking whether a cubic field K possesses a nontrivial genus class field is easy:

Proposition 2.3.1. Let K be a cubic number field with discriminant d = discK and assume that
f ≡ 1 mod 3 is prime. Then the compositum of K and the cyclic cubic field kf of conductor f is
unramified over K if and only if f2 | d.

Proof. Assume that f2 | discK. Then f ramifies completely in K/Q. This in turn implies that f ramifies
in K(

√
d )/Q(

√
d ), and since this extension is cyclic (in fact, N = K(

√
d ) is the normal closure of K/Q),

it ramifies completely. If the prime ideals above f would ramify in kfN/N , they would be ramified
completely in kfN/Q(

√
d ). But this extension is bicyclic of degree 9, and only prime ideals above 3

can ramify completely in such extensions (this is due to the fact that the factor group V0/V1 of the
ramification subgroups is cyclic). Therefore, kfN/N is unramified, and since kfN/K is abelian (it is
cyclic of degree 6), kfK/K must be unramified as well.

On the other hand, if kfK/K is unramified, then applying the formula for the discriminants of towers
to kfK/K/Q yields disc kfK = d3; applying it to kfK/kf/Q we find that f6 | disc kfK (recall that
disc kf = f2), and this shows that f2 | d.

Thus the compositum of K with the cyclic cubic field of prime conductor f is unramified over K if
and only if f2 | discK; only the cyclic cubic field of conductor 9 needs special attention (we have simply
computed the discriminant of the compositum for all fields such that discK is exactly divisible by 81,
although working locally at 3 would have been faster).

2.4 `-Class Fields of Quadratic Extensions

In this section we will have a closer look at `-class fields of quadratic extensions k/F , and we will use
this additional information (i.e. the fact that k/F is normal) to simplify our construction. We will need
the following special case of what we proved in the first section (Prop. 2.2.1):

Proposition 2.4.1. Let k/F be a quadratic extension, τ the nontrivial automorphism of k/F , ` an odd
prime, and suppose that k contains the `th roots of unity. Then K = k(

√̀
ω) is normal over F if and

only if ωτ = ωaξ` for some ξ ∈ k and a ∈ {−1,+1}; moreover,

Gal (K/F ) ' Z/2`Z ⇐⇒
{
a = +1 and ζ ∈ F,
a = −1 and ζ ∈ k \ F

Gal (K/F ) ' D` ⇐⇒
{
a = −1 and ζ ∈ F,
a = +1 and ζ ∈ k \ F

Now let k/F be a quadratic extension of number fields, and assume that ` | h(k) (note that this
notation differs from the one we have used so far: k is not assumed to contain the `th roots of unity).
Assume moreover that k is not contained in F ′ = F (ζ`) and that ` - h(F ′). Then G = Gal (k′/F ) '
C2 × Cn for some divisor n = #G of `− 1.

Let τ ∈ G denote the automorphism of order 2 fixing F ′. Gal (k′/k) is generated by some automor-
phism σr ∈ G mapping ζ to ζr. Let k̃ be the fixed field of 〈σ−1τ〉. We know that the `-class fields of
k are contained in the Kummer extensions corresponding to E1, and more exactly to its subgroup Ẽ1 of
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`-primary elements. Now Gal (k′/F ′) acts on Ẽ1; using the idempotents e+ = 1
2 (1+ τ) and e− = 1

2 (1− τ)
we can define Ẽ+

1 = Ẽe
+

1 , Ẽ−1 = Ẽe
−

1 , and we get Ẽ1 = Ẽ+
1 ⊕ Ẽ−1 .

By Prop. 2.4.1 we know that every ω ∈ Ẽ+
1 gives rise to an unramified extension K/k′ such that

Gal (K/F ′) ' C2 × C`. Since ` - h(F ′), there are no such extensions, hence all the unramified cyclic
`-extensions of K which are abelian over k must come from Ẽ−1 .

Now we claim that E−1 is generated by elements of the field k̃. But since both τ and σ−1 act as −1
on E−1 , their product τσ−1 acts trivially. In particular, the relative norm Nk′/ek = 1 + τσ−1 induces an

isomorphism on E−1 . This shows that all elements of E−1 (and, a fortiori, of Ẽ1) are generated by elements
of k̃:

Proposition 2.4.2. Let k be a quadratic extension of number field F , and let ` be an odd prime. Assume
that k is not contained in k′ = k(ζ`), and let τ ∈ G = Gal (k′/F ) be the automorphism fixing F ′ = F (ζ`).
Let k̃ be the fixed field of σ−1τ , where σ−1 is the automorphism mapping ζ` −→ ζ−1

` . Then a cyclic
`-extension L/k′ with Gal (L/F ′) ' D` is abelian over k if and only if L has the form L = k′(

√̀
ω̃) for

some ω̃ ∈ k̃/k̃× ` such that σr(ω̃) = ω̃r. In particular, L contains an unramified cyclic extension of degree
` over k if and only if ω̃ ∈ E−1 .

We see that instead of having to compute a subgroup of Cl(k′) it suffices to know the generators of
the class group of a smaller field.

Example 2.4.1. Let us illustrate the construction procedure by examining K = Q(
√

79 ). K has class
number 3, and its ideal class group is generated by the prime ideal 51 = (5, 21 + 2

√
79 ) of norm 5;

moreover, 53
1 = (ω1) for ω1 = 21+2

√
79. The fundamental unit of K is ε = 80+9

√
79, but we have seen

that we do not need it for the construction of the class field of K.
Now let us take a look at K ′ = Q(

√
79,
√
−3 ). The class number formula for bicyclic biquadratic

number fields gives h(K ′) = 18. One factor 3 is accounted for by the subgroup generated by 51, the other
comes from the 3-class group 〈[131]〉 of the subfield F = Q(

√
−3 · 79 ), where 131 = (13, 8 + 3

√
−3 · 79 )

is a prime ideal in OF above 13. We find 133
1 = (ω2) for ω2 = 8 + 3

√
−3 · 79.

We find E = 〈ζ3, ε, ω1, ω2〉. Decomposing E yields E0 = 〈ε, ω1〉 and E1 = 〈ζ3, ω2〉. For the construction
of the Hilbert class field of K we just have to examine E1. In fact, since E+

1 = 〈ζ3〉, it is sufficient to
consider E−1 = 〈ω2〉: since h(K) = 3, we conclude that ω2 must be primary. Therefore, the extension
K ′( 3
√
ω2 ) contains the Hilbert class field of K: in fact, it is generated by a root µ = 3

√
ω2 + 3

√
ω′2 of the

polynomial x3 − 39x− 16 ∈ Z[x] (in general, µ = 3
√
ω + 3

√
ω′, where Nω = n3 and Tω = t, satisfies the

equation x3 − 3nx− t = 0 because of µ3 = ω + ω′ + 3µ( 3
√
ωω′) = t+ 3nµ).

Just as easily we can give the Hilbert class field F 1 of F (note that F ′ = K ′): the ideal class group of F
is cyclic of order 6, with [131] generating the subgroup of order 3. The Kummer extension containing F 1

is generated by an element of E0 = 〈ε, ω1〉. Since ε is primary, we find F 1 = F (θ), where θ = 3
√
ε+ 3
√
ε′

is a root of the polynomial x3 − 3x− 160.
The 2-class field of F is just its genus field F (

√
−1 ). Summarizing our results we get the class field

F ′
1 = F (

√
−1, µ, θ) of F ′. If we prefer real generators, we can replace

√
−1 by

√
3 · 79.

Example 2.4.2. Next we look at an example taken from [123], the bicyclic field K = Q(
√

33,
√
−23 ).

Here Cl(K) ' (4, 3, 3), and the 2-class field of K is easily computed by noting that K is an unramified
quadratic extension of k = Q(

√
−759 ) and that Cl(k) ' (2, 4, 3): now Rédei-Reichardt applies, and

solving x2 + 11y2 = 33z2 we find that L = K
(√
−5 + 2

√
−11

)
is the 2-class field of K. Alternatively, L

is generated by a root of x4 + 10x2 + 69.
Since the 3-class group of a bicyclic number field is the direct product of the 3-class groups of its

quadratic subfields, it suffices to compute the 3-class fields of F = Q(
√
−23 ) and of k. Since Q(

√
69 )

has class number 1, we only need its unit group, and from ε = 1
2 (25 + 3

√
69 ) we read off that the roots of

x3 − 3x − 25 generate the 3-class field of F . Finally we look at Q(
√

253 ); here ε = 1
2 (1861 + 117

√
253 )

is the fundamental unit, giving the polynomial x3 − 3x− 1861.
Collecting everything we see that the roots of

x4 + 10x2 + 69, x3 − 3x− 25, and x3 − 3x− 1861
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generate the Hilbert class field of K.

Remark 6. Although the coefficients of the polynomials in the last example are fairly small, we can
already see that their size might become quite large if the fundamental units have large coefficients. In
fact, if C1 = 1 and if E−1 has rank 1, then the size of the constant term of the resulting polynomial only
depends on the unit ε ∈ E−1 . In such a case it would be desirable to find some α ∈ Oek such that α3ε

has small coefficients. In our example d = 253, where ε = 1
2 (1861 + 117

√
253 ), such an element is

α = 16−
√

253: clearly α3ε = 1
2 (19 +

√
253 ) has smaller coefficients than ε. The resulting polynomial is

x3 − 9x− 19.

Example 2.4.3. Let us see what we can say about the class field of K = Q(
√
−47 ). K has class number

5, so we put K ′ = K(ζ5) and define σ to be a generator of Gal (K/K). Since K ′ has class number 5
we conclude that C1 = 1 (only Cl5(K) contributes to Cl5(K ′)). Let ε = 1

2 (1 +
√

5 ) be the fundamental
unit of Q(

√
5 ); we can find a unit η ∈ K ′+ in such a way that η1+σ2

= ±1. Then Hasse has shown
that E = 〈ζ, ε, η, ησ〉 form a 5-maximal subgroup of the unit group of K ′. Now we get η2+σ ∈ E1: in
fact, (η2+σ)σ = ±η2σ−1 5= (η2+σ)2. Moreover, we have η3+σ ∈ E3 and ε ∈ E2, and this shows that
E = E0 ⊕ E1 ⊕ E2 ⊕ E3, where E0 = E`, E1 = 〈ζ5, η2+σ〉E`, E2 = 〈ε〉E`, and E3 = 〈η3+σ〉E`. Anyway, if
K ′( 5
√
µ) is an abelian extension of K then we must have µ ∈ E1. Since E−1 = 〈η2+σ〉E`, we conclude that

η2+σ is 5-primary, hence the class field we are looking for is K ′( 5
√
η2+σ).

The actual computation of the unit η yields

η =
1
2

(47− 5
√

5
2

− 5−
√

5
2

√
47

5 +
√

5
2

)
.

This is Hasse’s [26] result. By the way, the relative class number h∗ = #Cl(K ′/K ′+) = 2 · 5 given
there is incorrect: K has odd class number, (K ′ : K) = 4 is a 2-power, and exactly one prime ramifies in
K ′/K: the ambiguous class number formula implies that K ′ has odd class number.

The problem of how to compute a generating polynomial for the cyclic unramified extension of K
from the Kummer generator ω ∈ K ′ has been dealt with by Gras [31] and Odai [89].

It is easy to derive bounds for the ranks of the groups Ei from the unit theorems of Minkowski and
Herbrand; see Leopoldt [313] or Oriat and Satgé [350].

2.5 Leopoldt’s Spiegelungssatz

It is an interesting observation that the results of the preceding sections enable us to prove nontrivial
relations between the ranks of class groups. In fact, since the unramified cyclic extensions of degree
` over K are generated by `th roots of elements of E1 when lifted to K ′, we find immediately that
rankCl`(K) ≤ rank`E1 = rank`E1 + rank`C1 ≤ rank`E(K ′/K)/E(K ′)` + rank`Cl(K ′/K). Of course,
these last bounds are rather crude; this section is devoted to refining them.

What we want is to find relations between the submodules Ci of the `-class group and the submod-
ules Ẽj of the Kummer radical of an extension k′/k. This is accomplished by the fact that the Artin
isomorphism is actually a Gal (k/F )-isomorphism. We claim

Theorem 2.5.1. Let k/F be a finite abelian extension with Galois group G. Then the following assertions
are equivalent:

i) C(φ) 6= 1;

ii) there exists an unramified extension K/k of degree ` with Gal (K/k) = 〈τ〉 which is normal over k
such that τσ = τφ(σ);

Moreover, if k contains the `th roots of unity and if #G | `− 1, then i) and ii) are also equivalent to

iii) Ẽ(χφ−1) 6= 1.
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Proof. Assume that C(φ) 6= 1. Let I and H denote the group of fractional and principal fractional ideals
of k. To every ideal group D such that H ≤ D ≤ I there corresponds an unramified abelian extension
K/k of degree (D : H). Let K be the class field corresponding to a subgroup D of order ` in C(φ),
and let c be an ideal class generating D. Then K/k is an unramified abelian extension of degree `, and
since G acts on D, K/F is normal. Moreover, the Artin isomorphism shows that τ =

(K/k
c

)
generates

Gal (K/k), and the functoriality of the Artin symbol gives

τσ =
(K/k
cσ

)
=
(K/k

c

)φ(σ)

= τφ(σ).

This proves i) =⇒ ii).
For a proof of the other direction, assume that K satisfies the conditions ii). By Artin’s reciprocity

theorem, there is an ideal class c ∈ Cl`(k) such that τ =
(K/k

c

)
, and we find cσ−φ(σ) ∈ C = NK/kCl`(K).

Now C is a Z`[G]-module, and the map δ : G −→ C : σ 7−→ cσ−φ(σ) satisfies the Noether equations of
Thm. 2.1.3. Therefore there exists an ideal class d ∈ C such that δ(σ) = dσ−φ(σ). But now c′ = cd−1 is
an ideal class with τ =

(K/k
c′

)
(in particular, c′ 6= 1) and c′σ−φ(σ) = 1, and this shows that c′ ∈ C(φ).

Now assume that ii) holds and write K in the form K = k′(
√̀
ω ) for some ω ∈ Ẽ. By Prop. 2.2.1 we

know that τσ = τφ(σ) if and only if ωσ = ωχ(σ)φ(σ)−1
. This actually shows that ii) ⇐⇒ iii).

The character φ = χφ−1 is called the reflection of φ; note that φ = χχ−1φ = φ, thus reflection is an
involution on Aut(Ĝ).

Proposition 2.5.2. Let k be as above; then rankC(φ) ≤ rankẼ(φ) + rankC(φ).

Let us apply Prop. 2.5.2 to the simplest case ` = 3. Let k be a number field and put k′ = k(ζ3).
Then C0 = 3Cl(k) and C1 = 3Cl(k′/k). Let δ0 and δ1 denote the number of independent 3-primary units
in E(k) and E(k′/k), respectively; then

rankCl3(k) = rankC0 ≤ Ẽ1 + rankC1 = δ1 + rankCl3(k′/k),
rankCl3(k′/k) = rankC1 ≤ Ẽ0 + rankC0 = δ0 + rankCl3(k).

Taken together this gives

2rank Cl3(k) ≤ δ(K ′/K) + rank Cl3(k′) ≤ 2rank Cl3(k) + δ(K ′).

Proposition 2.5.3. Let K be a number field; let δ(K) and δ(K ′) denote the number of independent
3-primary units of E(K) and E(K ′), respectively, and put δ(K ′/K) = δ(K ′)− δ(K). Then

2rank Cl3(K) ≤ δ(K ′/K) + rank Cl3(K ′) ≤ 2rank Cl3(K) + δ(K ′).

For quadratic number fields K, Prop. 2.5.3 is just Scholz’s reflection theorem which says that the
3-ranks of Q(

√
m ) and Q(

√
−3m ) differ at most by 1.

If K is a totally real cubic field then δ(K ′/K) = 1 if and only if ζ3 is 3-primary, and δ(K ′/K) = 0
otherwise. In particular, we have 1 ≤ r′3 ≤ 4; the reason why there are no examples with r′3 = 1 in [119]
is that r′3 was not computed for the fields with δ(K ′/K) = 1. It is however easy to find examples (e.g.
the cyclic cubic fields of conductor 9 · 7). Moreover, there were also no examples with r′3 = 4; this is
probably due to the fact that only fields with discriminants < 100.000 were tested.

Next we’ll look more closely at the case ` = 5 for quadratic number fields k. Our results will contain
those of Parry [54, 59] on the Hilbert 5-class fields of the quadratic number fields k = Q(

√
m) and

k∗ = Q(
√

5m) as a special case. To this end, let m ∈ Z be squarefree (not necessarily positive). The
quadratic subfields of k′ = k(ζ5) are k, k∗ and Q(

√
5 ). The Galois group G = Gal (k′/Q) is generated

by the automorphisms σ : ζ −→ ζ2,
√
m −→

√
m and τ :

√
m −→ −

√
m, ζ −→ ζ. The following Hasse

diagrams display all the fields and groups involved:
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k k∗ Q(
√

5 ) 〈σ〉 〈στ〉 〈σ2, τ〉
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@ �

�� @@
@ �

��

Q 〈σ, τ〉

In order to construct the 5-class field of k we decompose the group E as before by using the idempotents
ej of the group algebra Z[Gal (k′/Q)] and get E = E0 ⊕E1 ⊕E2 ⊕E3. We know that k′( 5

√
ω) (for ω ∈ E)

is abelian over k if and only if ω ∈ E1.
Decomposing the G-modules Ej with regard to the action of τ gives Ej = E+

j ⊕ E−j . Replacing the
base field k by k∗ gives us E∗ = E∗0 ⊕ E∗1 ⊕ E∗2 ⊕ E∗3; observe that this decomposition corresponds to
the action of σ∗ = στ . Since τ acts as −1 ≡ r2 mod 4 on the submodules E−j , we find that E+

j = E∗j
+

and E−j = E∗−j+2, where the index j + 2 is to be read mod 4. It is also easy to see that C0 = 5Cl(k),
C2 = 5Cl(k∗), and C1 ⊕ C3 = 5Cl(k̃). Since Q′ has class number 1, we have C+ = 1.

The unit groups are slightly harder to compute. Let K/k be a finite extension of number fields. A
unit ε ∈ EK is called a relative unit if NK/kε = 1; the relative units of K/k form a group EK/k. For
cyclic quartic extensions K/Q with real quadratic subfield k Hasse showed that the group EkEK/k has
index ≤ 2 in the full group of units EK ; in particular, EkEK/k is 5-maximal.

Assume now that m > 0; then k, k∗ and K are totally real, hence k̃ is totally complex, and, in
particular, there are no nontrivial relative units in k̃/Q(

√
5 ). If, on the other hand, k is imaginary

quadratic, then k∗ and K are CM-fields, hence k̃ is totally real. In each case, k′ has unit rank 3, and

E = 〈ζ, ε5, ε, εσ〉 if m < 0, E = 〈ζ, ε5, εm, ε5m〉 if m > 0,

is a 5-maximal subgroup of E(k′) (here εd denotes the fundamental unit of Q(
√
d ), and ε (in the case

m < 0) is a relative unit, i.e. it satisfies ε1+σ
2

= ±1). Now we find that (ε2+σ)σ = ±ε2σ−1 5= (ε2+σ)2, i.e.
ε2+σ ∈ E1. The 5-maximality of E implies that ε2+σ is not trivial in E1; doing similar computations for
the other groups Ej and counting ranks (the equality E1 = 〈ε2+σ〉 comes from observing that the ranks
of the constructed subgroups add up to the 5-rank of E(k′)/E(k′)5) gives the following table (the case
m < 0 is handled similarly):

m > 0 m < 0
E+
0 = 1 E−0 = 〈εm〉 E+

0 = 1 E−0 = 1
E+
1 = 〈ζ〉 E−1 = 1 E+

1 = 〈ζ〉 E−1 = 〈ε2+σ〉
E+
2 = 〈ε5〉 E−2 = 〈ε5m〉 E+

2 = 〈ε5〉 E−2 = 1
E+
3 = 1 E−3 = 1 E+

3 = 1 E−3 = 〈ε3+σ〉

Next we examine which extensions K = k′( 5
√
ω ) are abelian over certain subfields of k′. Let H be

the subgroup of G = 〈σ, τ〉 fixing L; then k′/L is abelian if and only if H commutes with φ. From Prop.
2.2.1 we get

K is abelian over


k
k∗

K

k̃

 if and only if ω ∈


E1

E+
1 ⊕ E−3

E1 ⊕ E3

E−0 ⊕ E+
1 ⊕ E−2 ⊕ E+

3


Now k′( 5

√
ω) (for ω ∈ E) is abelian over k∗ if and only if ω ∈ E∗1 = E+

1 ⊕ E−3 . Next C+ = 1 implies
E+

1 = E+
1 = 〈ζ〉E(k′)`. On the other hand we know that unramified extensions k′( 5

√
ω) which are abelian
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over k or k∗ come from Ẽ−1 or (Ẽ∗1)
−, respectively. But E− ⊆ Ẽ−1 ⊕ C

−
1 , and E−1 is generated by the

relative units of k̃/Q(
√

5 ).
Letting δ denote the number of independent 5-primary units in E−1 (i.e. δ(k̃) = 0 if k̃ is CM or

if k̃ is totally real and the unique (up to a factor of ±1) relative unit in E−1 is not 5-primary) we get
rankC0 ≤ δ + rankC1. Replacing k by k∗ we get in a similar way rankCl5(k∗) = rankC2 ≤ δ∗ + rankC3.

Theorem 2.5.4. Let k = Q(
√
m ) be a quadratic number field, and let k∗ and k̃ be defined as above. Put

δ =
{

1 if εm is 5-primary,
0 otherwise, δ∗ =

{
1 if ε5m is 5-primary,
0 otherwise,

if m > 0 and

δ =
{

1 if ε2+σ is 5-primary,
0 otherwise, δ∗ =

{
1 if ε3+σ is 5-primary,
0 otherwise,

if m < 0, where ε denotes the relative unit of k̃ as defined above. Using the idempotents of Z[Gal (k′/k)],
we factorize C = 5Cl(k′) = C0 ⊕ C1 ⊕ C2 ⊕ C3; then C0 ' 5Cl(k), C2 ' 5Cl(k∗), and C1 ⊕ C3 ' 5Cl(k̃).
Let r5(F ) denote the 5-rank of the ideal class group of F :

r5(k) ≤ rankC1 ≤ r5(k) + δ
r5(k∗) ≤ rankC3 ≤ r5(k∗) + δ∗

r5(k) + r5(k∗) ≤ r5(k̃) ≤ r5(k) + r5(k∗) + δ + δ∗

 if m > 0,

r5(k)− δ ≤ rankC1 ≤ r5(k)
r5(k∗)− δ∗ ≤ rankC3 ≤ r5(k∗)

r5(k) + r5(k∗)− δ − δ∗ ≤ r5(k̃) ≤ r5(k) + r5(k∗)

 if m < 0.

The following table was computed using PARI:

m r5(k) r5(k∗) r5(k̃) δ δ∗ rankC1 rankC3 Cl(k̃)
−571 1 1 1
−347 1 0 1 1 0
−47 1 0 0 1 0 0 0
401 1 0 1 0 0 1 0 (20, 4)

1996 1 0 2 0 1 1 1 (20, 10, 2)
4504 1 1 2 0 1 1 1 (30, 30)

2.6 `-Class Fields of Cyclotomic Fields

The `-class field of Q(ζ`) has been studied extensively because of the connections with Fermat’s Last
Theorem. Pollaczek was the first to prove an essential part of what today is called ”Herbrand’s Theorem”.
In order to state it, let us introduce some notation. Let K = Q(ζ`), and put G = Gal (K/Q). Then
K+ = Q(ζ` + ζ−1

` ) is the maximal real subfield of K; its class number is denoted by h+
` . The minus

class group Cl−(K) of K is defined to be the kernel of the norm map NK/K+Cl(K) −→ Cl(K+). If h−`
denotes its order, we have the formula h(K) = h−` h

+
` .

We will also need the cyclotomic units ην , ν = 2, 4, . . . , `−3 (where g denotes a primitive root modulo
`)

ην =
`−1∏
a=1

(
ζ

1−g
2

1− ζg

1− ζ

)aνσ−1
a

.

A little computation shows easily that ησr
ν = ηr

ν

ν ε
` for some unit ε ∈ EK ; this shows that ην ∈ Eν , where

E = EK/E
`
K and E = E0⊕E1⊕ . . .⊕E`−1 is the decomposition of the F`[G]-module E into submodules.

Let Bn be the nth Bernoulli number; Pollaczek [8] and Herbrand [11] proved
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Theorem 2.6.1. For the F`[G]-module C = `Cl(K), the following is true:

a) C1 = 0;

b) if ν < ` is odd and ` - B`−ν then Cν = 0.

On the other hand, if ` | B`−ν then ην is `-primary, i.e. ην ≡ ξ` mod (1 − ζ)` for some ξ ∈ K. If the
class number h+ of the maximal real subfield K+ = Q(ζ` + ζ−1

` ) is not divisible by `, then ην is not an
`th power, and Kν = K(

√̀
ην) is an unramified cyclic extension of degree ` over K.

The fact that these class fields are generated by `-th roots of units was predicted by Takagi [306]:

Proposition 2.6.2. Let K = k(ζ`) be a quadratic extension, and suppose that the class number of k is
not divisible by `. Then every unramified cyclic extension of degree ` over K has the form K(

√̀
ε), where

ε is a unit in EK . In particular, rankCl`(K) ≤ `−3
2 if K = Q(ζ`) and ` - h+(K).

Proof. We have Ẽ = Ẽ0 + Ẽ1; moreover rank`Ẽ1 = rankCl`(k) = 0. Therefore the class fields of K have
the form K(

√̀
ω ) for ω ∈ Ẽ0. Since ` - h(k) we have C0 = 1, which shows that ω ∈ Ẽ0.

If K = Q(ζ`), then K(
√̀
ζ`) is ramified; hence there are at most dim (EK/E`K)− 1 independent units

giving rise to unramified `-extensions. Whence the claim.

If ` - h+
` , then the class field Kν constructed by Herbrand does not only show that one of the Ci is

non-trivial: actually it implies that Cν 6= 1.

Corollary 2.6.3. Assume that ` | B`−ν and ` - h+; then Cν 6= 1.

This is an immediate consequence of Thm. 2.5.1. In fact, the assumptions imply that K(
√̀
ην ) is

a cyclic unramified extension of degree `; since ην ∈ Ẽν , Thm. 2.5.1 implies that C1−ν = C`−ν is not
trivial.

It was not clear what happened for primes ` such that ` | h+(Q(ζ`)) (Vandiver’s conjecture says that
there aren’t any) until Ribet [49] used the theory of modular forms to prove

Theorem 2.6.4. If ` | B`−ν for some odd ν ≤ `− 2, then Cν 6= 0.

Together with Theorem 2.6.1 this shows that p | B`−ν if and only if Cν is not trivial.
We have seen that ` | B`−ν implies that Cν 6= 1, and in particular, that ` divides the class number of

K = Q(ζ`). In fact we can even determine whether ` divides the class number of some subfield (Vandiver
[305]):

Proposition 2.6.5. Suppose that ` - h+
` , ` | B`−ν for some odd ν ≤ `− 2, and put m = (ν, `− 1). Then

` divides the class number of the unique subfield of degree `−1
m of Q(ζ`).

Proof. Let L = K(
√̀
ην ) be the class field constructed above. We know that L/Q is normal with Galois

group Γ = Gal (L/Q) = 〈σ, τ |σ`−1 = τ ` = 1, σ−1τσ = τa〉

Proposition 2.6.6. Let C =
⊕
Cν be the decomposition introduced above. If ν is an even integer ≤ `−3

then
rankCν ≤ rankC`−ν ≤ rankCν + 1.
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Chapter 3

Separants

In 1971, L. Goldstein introduced generalized prime discriminants for fields F with class number 1; it
turned out that every discriminant of a quadratic extensions of F could be written as a product of prime
discriminants if and only if F is totally real with class number 1 in the strict sense. In this chapter we
define a group which measures the extent to which such factorizations are non-unique.

3.1 Introduction

The simplest invariant of a quadratic number field k = Q(
√
m ), m ∈ Z squarefree, is its discriminant

disc k, which is given by

disc k =
m, if m ≡ 1 mod 4

4m, if m ≡ 2, 3 mod 4 .

In contrast to fields of higher degree, a quadratic number field k is defined uniquely by its discriminant
disc k. Gauss has shown (cum grano salis) that the 2-rank of the ideal class group can be computed by
factorizing disc k into prime discriminants; these are discriminants which are prime powers, i.e.,

disc k ∈ {−4,±8,−q (q ≡ 3 mod 4 prime), p (p ≡ 1 mod 4 prime)}.

It is easy to see that every discriminant of a quadratic number field can be written uniquely (up to
permutation) as a product of prime discriminants; the 2-rank of the ideal class group of k in the strict
sense then equals t− 1, where t is number of factors of disc k.

Now suppose that F is a number field with class number 1; then the ring of integers Ok of every
quadratic extension k/F has an OF -basis {1, α}, i.e., Ok = OF ⊕ αOF . The generalized discriminant
of k/F defined by disc(k/F ) = discα = (α − α′)2 is unique up to squares of units in OF ; we will call
a generalized discriminant prime if it is a prime power. Then it is natural to ask if every generalized
discriminant can be factorized into prime discriminants, and if this factorization (if it exists) is unique (up
to permutation or multiplication by squares of units). This question was answered partially by Goldstein
[249] who showed that such a factorization exists if F is a totally real number field which has class number
h+(F ) = 1 in the strict sense, i.e., if F has class number 1 and units with independent signatures. He
also showed that all factorizations into prime discriminants are equivalent if and only if (kgen : k) = 2t−1,
where t is the number of ”factors” of d; however he failed to notice that this always holds if F is totally
real and h+(F ) = 1, and his Theorem 5.1, which treats unique factorization into prime discriminants over
real quadratic F , is even false. Sunley [251] settled unique factorization for real quadratic number fields
with strict class number 1, and finally Davis [264] found that the totally real fields F with h+(F ) = 1 are
the only number fields in which factorization into prime discriminants exists, and that these factorizations
are necessarily unique.

In fact it is easily seen that the discriminants of some quadratic extensions of F = Q(i), i2 = −1,
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cannot be factorized into prime discriminants: if µ ∈ Z[i] is squarefree, then

disc (k/F ) =
±µ, if µ ≡ ±1 mod 4
±2iµ, if µ ≡ ±1 + 2i mod 4
±4µ, if µ ≡ ±i mod 2 or µ ≡ 0 mod 1 + i

.

In particular, the discriminant ±(1 + 2i)2i of Q
(√

1 + 2i
)

is neither prime nor a product of prime
discriminants, because the only prime discriminants above 1 + i are d = ±4i for Q

(√
i
)

and d = ±4± 4i
for Q

(√
1± i

)
.

An even simpler example is provided by quadratic fields, if we take the infinite primes into account:
the factorization of disc k into prime discriminants corresponds to the maximal abelian extension k+

gen of
Q which is unramified at the finite primes. Suppose we are only interested in extensions which are also
unramified at ∞; then only factorizations into ”positive” discriminants correspond to subfields of kgen.

Example 3.1.1. Let k = Q(
√

1155 ); then d = disc k = 1155 = 4 · 3 · 5 · 7 · 11, and its factorization
into prime discriminants is d = (−4) · (−3) · 5 · (−7) · (−11). This shows that Cl+(k) has 2-rank 4,
and that k+

gen = Q(
√
−1,
√
−3,
√

5,
√
−7,
√
−11 ) is the genus field of k in the strict sense. On the other

hand, Cl(k) has 2-rank 3, and the genus field of k in the usual sense is kgen = Q(
√

5,
√

3,
√

7,
√

11 ),
which does not correspond (directly) to a factorization of d into positive prime discriminants, but rather
is associated to the factorizations d = 5 · 12 · 77 = 5 · 28 · 33 = 5 · 44 · 21 of d into relatively prime and
positive discriminants.

In order to restore unique factorization into prime discriminants, we have to follow Kummer’s idea of
introducing ”ideal elements”; for F = Q(

√
−1 ), such an ideal discriminant would be the set

{2iµ | µ ≡ ±1 + 2i mod 4 squarefree}

of all discriminants which are exactly divisible by 2i. Similarly, {−3,−4,−7,−8,−11, . . .} would be an
ideal discriminant at ∞ in the real quadratic case.

We will show how to make these ideal elements into a group containing the generalized discriminants
as a subgroup, and we will compute the order of their factor group. It turns out that this factor group is
trivial if and only if F is totally real and h+(F ) = 1, hence our results contain those of Goldstein, Sunley
and Davis described above as a special case.

The results of this chapter, which elaborates ideas sketched in the authors dissertation [115], will be
used in Chap. 4, where theorems of Koch, Rédei and Reichardt, and Scholz on the 2-class field tower
of quadratic number fields will be generalized. I have meanwhile discovered that the idea of introducing
”ideal discriminants” has been anticipated by Brandt [234, 235] for quadratic extensions of Q(

√
−1 ).

One more remark: we will give a completely different definition of separants in the next section; this
will simplify the introduction of a group structure on the set of separants considerably.

3.2 Norm Residue Characters

Proposition 3.2.1. Let kj/F, j = 1, 2, be quadratic extensions of F , and put dj = sep(kj/F ). Then
L = k1k2 is a V4-extension of F with subfields k1, k2, k3, and the following assertions are equivalent:

i) d1 · d2 = d1 ∗ d2;

ii) (d1, d2) | ∞;

iii) L/k3 is unramified outside ∞.

3.3 The Separant Class Group SCl(F )

3.4 Fields with SCl(F ) = 1

An important property of fields with trivial separant class group is
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Proposition 3.4.1. Let F be a number field with SCl(F ) = 1; then for every prime p | 2OF there exists
a unit ε ∈ EF such that p is the only finite prime ramified in F (

√
ε )/F . Moreover, if p is ramified in

F (
√
α ) for some α 6≡ 0 mod b, then p does not ramify in k = F (

√
αε )/F .
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Chapter 4

The Construction of 2-Class Fields

In this Chapter we deal with the 2-class field tower of an algebraic number field; in particular we are
interested in simple ciriteria which guarantee the existence of certain ”small” unramified non-abelian
2-extensions. Then we correct and extend results of Koch on the 2-class field tower of quadratic number
fields, and we show how to generalize Scholz’s reciprocity law to fields of higher degree.

4.1 Introduction

The first result on 2-class groups of quadratic number fields k that was not contained in the genus
theory of Gauss and Dirichlet is the criterion of Rédei and Reichardt [15], which links the existence of
quartic cyclic unramified extensions of k to certain factorizations of the discriminant disc k into prime
discriminants. Koch showed how a theorem of Fröhlich could be used to generalize this correspondence
to other unramified extensions of class 2. Our aim is to generalize these results from quadratic extensions
of Q to quadratic extensions of number fields F with odd class number in the strict sense. To this end
we replace Goldstein’s generalized prime discriminants by prime separants (see Cahp. 3 for the necessary
background) and show that the theory of Rédei, Reichardt and Scholz (cf. [12, 15, 535]) is valid over
such fields. In particular, we will find a reciprocity theorem which contains Scholz’s reciprocity law as
a very special case. Moreover we will show how to construct parts of the 2-class field tower of certain
number fields k beyond the Hilbert 2-class field k1; in particular, we will study unramified dihedral and
quaternionic extensions.

4.2 Cyclic extensions

We start with the proof of a criterion which in case F = Q is due to Rédei and Reichardt. To this end, we
need some notations: let L/F be a D4-extension, i.e., a normal extension such that Gal (L/F ) ' D4 =
〈σ, τ : σ4 = τ2 = 1, τστ = σ−1〉 (thus D4 is the dihedral group of order 8). Then diagram 1 gives the
subfields of L/F and the subgroups of D4 corresponding to these subfields by Galois theory.

We call an extension K/k unramified if no finite prime ramifies in K/k; accordingly, two separants
d1, d2 are said to be relatively prime if (d1, d2) | ∞.

Theorem 4.2.1. Let F be a number field with odd class number, k/F a quadratic extension, and L/k
an unramified C4-extension. Then

i) L/F is normal with Galois group Gal (L/F ) ' D4, and L/k is the cyclic quartic extension in L/F ;

ii) there exists a ”C4-factorization” d = sep(k/F ) = d1 · d2 of d into separants d1, d2 such that

a) (d1, d2) = 1;

b) (d1/p2) = (d2/p1) = +1 for all prime ideals p1 | d1 and p2 | d2.
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On the other hand, if d = d1 · d2 is a C4-factorization, let δj be a representative of dj , j = 1, 2; then
the diophantine equation

X2 − δ1Y 2 − δ2Z2 = 0 (4.1)

is solvable in OF . For any solution (x, y, z) ∈ O3
F of (4.1), put µ = x + y

√
δ1 and ν = 2(x − z

√
δ2);

then L = k(
√
d1,
√
µ ) = k(

√
d2,
√
ν ) is a cyclic quartic extension of k, which is unramified outside 2∞;

moreover, L/F is normal and Gal (L/F ) ' D4.
If SCl(F ) = 1 (that is, if F is totally real and has odd class number in the strict sense, cf. Ch. 3),

we can choose the solutions to (4.1) in such a way that L/k becomes unramified at all finite primes.

This implies the criterion of Rédei-Reichardt as a

Corollary 4.2.2. Suppose that SCl(F ) = 1 and let k/F be a quadratic extension with separant d; then
the following assertions are equivalent:

a) there exists a C4-factorization d = d1 · d2;

b) there exists an unramified C4-extension of k.

The question whether these extensions are ramified at the infinite primes will be answered in Sect. 4.3

Proof of Theor. 4.2.1. The fact that L/F is normal follows from [507]; a direct proof runs as follows:
Gal (L/k) is cyclic of order 4, and corresponds via Artin’s reciprocity law to a subgroup H of index 4
in Cl(k) which is defined by H = ker

{(L/k
·
)

: Cl(k) −→ Gal (L/k)
}
. Moreover,

(L/k
c

)
=
(L/k

p

)
, where

p is a prime ideal in Ok generating the ideal class c ∈ Cl(k). If c generates Cl(k)/H, then Gal (L/k) is
generated by the Artin symbol σ =

(L/k
c

)
. Let τ denote the non-trivial automorphism of k/F , and let τ̃

be an extension of τ to some normal closure of L/F ; then L/F is normal if and only if τ̃−1στ̃ is a power
of σ. Letting automorphisms act on the right, we find τ̃−1στ̃ =

(L/k
cτ

)
= σ−1: to see this, observe that

the ideal class c1+τ is generated by an ideal from OF and hence has odd order; since Cl(k)/H ' Z/4Z,
we must have c1+τ ∈ H. But H is the kernel of the Artin symbol, and this shows that

( L/k
c1+τ

)
= 1.

So far we know that L/F is Galois, and that Gal (L/F ) = 〈σ, τ̃〉. We also know that σ has order 4,
and that [σ, τ̃ ] = σ2. It remains to show that τ̃ has order 2. To this end we observe that τ =

(k/F
p

)
for

some prime ideal p which is inert in k/F (exactly the split primes are in the kernel of the Artin symbol).
Write τ̃ =

(L/F
P

)
for some extension P of p to OL. Then by well known properties of the Artin symbol

(for example, see [627], II, V’, p. 9) we find τ̃2 =
(L/k

p

)
, and this automorphism is trivial because the

ideal class generated by p has odd order, hence lies in H.
We have seen that Gal (L/F ) ' D4; therefore L/F contains three quadratic extensions; one of them

is, of course, k/F , and the other two will be denoted k1 and k2. Since k1k/k and k2k/k are unramified at
the finite primes, Prop. 3.3.2.1 shows that d = sep(k/F ) is the product of two separants d1 = sep(k1/F )
and d2 = sep(k2/F ), and that (d1, d2) | ∞.
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If p were an infinite prime dividing both d1 and d2, then p would ramify in k1 and k2, hence in K/k.
But L/k is cyclic of order 4, and primes ramifying in K/k have inertia field k in L, so p must also ramify
in L/K: this is obviously nonsense for infinite primes, and we see that (d1, d2) = 1.

In order to show that (d1/p2) = +1 for all prime ideals p2 dividing d2, we have to study the decompo-
sition groups Z = ZP(L/F ) of the prime ideals P above p in L/F . Suppose that p2 | d2; then p2 ramifies
in k2/F , and the inertia subgroup T = TP(L/F ) has the following properties:

1. T has order 2: this is clear, because p has ramification index 2 in L/F (recall that L/k is unramified);

2. T ⊆ U = 〈στ, σ2〉: observe that T ⊆ U if and only if p does not ramify in the fixed field of U , which
is k1:

3. T ∩Gal (L/k) = {1}: this is equivalent to p being unramified in L/k.

The only subgroups of D4 with these properties are T = 〈στ〉 and T = 〈σ3τ〉. The fact that T C Z is
normal in Z shows that Z must be a subgroup of the normalizer 〈στ, σ2〉 of T in D4. But Z ⊆ 〈στ, σ2〉
implies that the fixed field k1 of 〈στ, σ2〉 is contained in the decomposition field of p in L/F , i.e., that p
splits in k1. By symmetry, we also have (d2/p1) = +1, and this proves the first part of Theor. 4.2.1.

The proof of the second part of Theor. 4.2.1 consists of several steps:

Solvability of (4.1)

We have to show that (4.1) has local solutions, i.e., that (4.1) is solvable mod pν for every ν ∈ N and
every prime place p. For places p - d this is easily done (recall that the conductor of δj divides d), and for
infinite places it can be deduced from the fact that δ1 and δ2 cannot both be negative at a given infinite
prime p. Hence we may assume that p | d; making use of the norm residue symbol of Hasse, we have to
show that

(
δ1,δ2

p

)
= 1. Using the formulae in [627], II, (4.) on p. 54, (14.) on p. 55, we find(

δ1, δ2
p

)
=
(
d2

p

)a
, if pa ‖ d1, and(

δ2, δ1
p

)
=
(
d1

p

)a
, if pa ‖ d2.

Now the fact that d = d1 ·d2 is a C4-factorization shows that the quadratic residue symbols (dj/p) = 1,
hence (4.1) has indeed non-trivial solutions.

Remark 7. If pa ‖ d for some even a = a(p), we only used that (d1, d2) = 1; hence (4.1) is solvable
under the weakened condition that (d1/p2) = (d2/p1) = +1 for all prime ideals pj such that a(pj) is odd.
We will need the stronger property (d1/p2) = 1 for removing these p2 | 2 from the list of ramified primes.

Gal (L/F ) ' D4

For computing the Galois group of L/F , we use Lemma 1.1.1.6. The relation

µ

ν
=

2(x+ y
√
δ1 )

x2 − δ2y2
=

(
x+ y

√
δ1 + z

√
δ2

y
√
δ1

)2

shows that indeed k(
√
d1,
√
µ ) = k(

√
d2,
√
ν ) as claimed. We define automorphisms of L/k

σ :
√
δ1 7−→ −

√
δ1,

√
δ2 7−→ −

√
δ2,

τ :
√
δ1 7−→ +

√
δ1,

√
δ2 7−→ −

√
δ2.

and find ασ = µ/(z
√
δ2 ), εσ = −1, ατ = ετ = 1 and αστ = ασ, εστ = 1. This shows that Gal (L/F ) '

D4.
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Ramification outside 2∞
Because the class number h of F is odd, L can also be generated by the square root of µh. If p is a prime
ideal in OF such that p | µ, then ph | µh. Since ph = (π) is principal, and because changing µh by a factor
in F× does not change the Galois group of L/F , we can divide µh by all ph = (π) such that p | µ and
arrive at a µ1 ∈ K× which is not divisible by any prime ideal p C OF . In particular, L/k is unramified
outside 2∞ for L = K(

√
µ1 ), and it is obvious that µ1 corresponds to a solution of (4.1), hence we may

assume without loss of generality that µ = µ1.

Ramification above 2 if SCl(F ) = 1

Before we start removing the ramification above 2, we recall the part of the decomposition law for relative
quadratic extensions which we will need:

(†) Let k = F (
√
µ ) be a quadratic extension of a number field F ; let p | 2 be a prime ideal in OF , and

suppose that p - µ and pm ‖ 2. Then

p splits if µ ≡ ξ2 mod p2m+1 for some ξ ∈ OF ;

p does not ramify if µ ≡ ξ2 mod p2m for some ξ ∈ OF ;

p ramifies if µ ≡ ξ2 mod p2m is not solvable in OF .

We are now in the following situation: we have found a solution to (4.1) corresponding to a µ ∈ OF
which has no prime ideal divisors from OF . We want to show that there is a unit ε ∈ EF such that
L′ = K(

√
µε ) is a C4-extension of k unramified outside ∞. The Galois group of K(

√
µ )/F does not

change when we multiply µ with an r ∈ F×, and neither does ramification outside 2∞ if r ∈ EF , hence
we only need to take care of the ramification above 2.

We will begin with the prime ideals p | d above 2 and will assume without loss of generality that p | d2;
since d = d1 · d2 is a C4-factorization, p = PP′ splits in k1. Moreover, P and P′ ramify in K/k1, and
L/K is unramified at P if and only if P does not ramify in one of K1/k1 or K ′

1/k1. Suppose it does; then
p - µ shows that P - µ or P′ - µ; changing the roles of µ and µ′ if necessary we may assume that P - µ.
P has inertia degree 1 over F , hence for every m ∈ N there exists an α ∈ OF such that µ ≡ α mod P2m.
Choose m ∈ N as in (†) above; then Prop. 3.3.4.1 guarantees the existence of a unit ε ∈ EF such that

a) αε ≡ ξ2 mod p2m, and

b) p is the only prime ideal ramifying in F (
√
ε )/F .

This implies that µε ≡ αε ≡ ξ2 mod P2m, so P does not ramify in the quadratic extension k1(
√
µε )/k1.

This procedure does not change the ramification outside p∞ and may be applied repeatedly to all p
dividing both 2 and d.

Next assume that p | 2 does not ramify in K; if p splits in k1/F or k2/F , then the same procedure
as above reduces possible ramification at p without damaging ramification at other finite places. Hence
we are left to consider the case when p is inert in k1/F and k2/F . Since p does not ramify in k2, the
congruence δ2 ≡ ξ2 mod p2m is solvable, hence so is N1µ = µµ′ = x2 − δ1y2 = δ2z

2 ≡ ξ2 mod p2m. Now
we need

Lemma 4.2.3. Suppose that SCl(F ) = 1, let p | 2 be a prime ideal in OF , and suppose that p is inert in a
quadratic extension K/F ; moreover, assume that p - α ∈ OK , and put L = K(

√
αα′ ). If the congruence

NK/Fα ≡ ξ2 mod p2m is solvable, then there exist a ∈ OF and β ∈ OL such that α ≡ aβ2 mod p2m.

Lemma 4.2.3 implies that µ ≡ aβ2 mod p2m for some a ∈ OF ; Prop. 3.3.4.1 shows the existence of a
unit ε ∈ EF such that aε is a square mod p2m without changing the ramification outside p∞. Replacing
µ by µε, we have removed the ramification at p.

Proof of Lemma 4.2.3. We first find a γ ∈ OK \ p such that p - TrK/F (αγ2). If p - (α + α′), then γ = 1
does the trick. Hence assume that p | TrK/F (α) and recall that OK/p and OF /p are finite fields. The
trace map Tr : OK/p → OF /p is onto, hence here is a γ ∈ OK \ p such that Tr(γ) ≡ 1 mod p. Now
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p | (α + α′) and p | 2 imply that αγ2 + α′γ′
2 ≡ α(γ + γ′)2 ≡ α mod p. Replacing α by αγ2 if necessary,

we may assume that p - (α+ α′).
Now we see that p - α(α + α′ + 2αα′); the assumption αα′ ≡ ξ2 mod p2m implies that

√
αα′ ≡

ξ mod pm, hence pm | 2 shows that 2
√
αα′ ≡ 2ξ mod p2m, and we see that α+α′+2

√
αα′ ≡ a mod p2m for

some a ∈ OF . The claimed congruence now follows from the identity α(α+α′+2
√
αα′) = (α+

√
αα′)2.

Remark 8. The conditions in Theor. 4.3.3 cannot be weakened; in particular, its assertions do not hold
if SCl(F ) 6= 1 or if d = d1 · d2 is not a C4-factorization:

1. Let F = Q(i), i2 = −1; we have shown in Ch. 3 that SCl(F ) ' Z/2Z. Put π = 1 + 4i, ρ = 5 + 4i:
then d = π · ρ is a C4-factorization and L = F (i,

√
π,
√
ρ,
√

2 +
√
ρ ) is a dihedral extension of F ,

unramified outside 2∞, but there does not exist an unramified C4-extension of k = F (
√
d ) because

h(k) = 2.

2. Let F = Q and k = Q(
√
−5 ); then SCl(F ) = 1, but d = −20 = −4 · 5 is no C4-factorization

(because ( 5
2 ) = −1). Although L = Q(i,

√
5,
√

1 + 2i ) is a dihedral extension of Q such that L/k is
unramified outside 2∞, there is no unramified C4-extension of k because h(k) = 2.

The existence of the C4-extension L/k could have been predicted by Remark 7, because 2m ‖ d1 = −4,
where m = 2 is even.

Halter-Koch [353] has shown that the criterion of Rédei and Reichardt implies an inequality due to
Damey and Payan [317] on the 4-ranks of the ideal class groups of Q(

√
m ) and Q(

√
−m ); the results

proved in this section allow us to generalize Halter-Koch’s proof to all base fields F such that SCl(F ) = 1.
We will not give any details, however, because Oriat [344] was able to generalize these inequalities to
arbitrary number fields F (this seems to indicate that there may be an extension of the theory of separants
to arbitrary number fields F ).

For examples of unramified C4-extensions of quadratic extensions of F = Q we refer the reader to
Fueter [5] or Herz [24]; we will, however, give a few less trivial examples:

F = Q(
√

2)
d d1 d2 α

85 + 36
√

2 7 + 2
√

2 11 + 2
√

2 −11− 6
√

2 + (2 + 2
√

2)
√

11 + 2
√

2 � 0
113 11 + 2

√
2 11− 2

√
2 10 + 5

√
2 +

√
11 + 2

√
2 � 0

253 + 120
√

2 13 + 4
√

2 17 + 4
√

2 25− 14
√

2 + (8− 6
√

2)
√

13 + 4
√

2 � 0

F = Q(
√

5)
d d1 d2 α

−19 −1 + 2
√

5 −1− 2
√

5
√

5 + (1−
√

5 )
√
−1 + 2

√
5

97 + 36
√

5 7 + 2
√

5 11 + 2
√

5 −12− 17
√

5 + (1 +
√

5 )
√

11 + 2
√

5 � 0

Remark 9. Rédei and Reichardt also showed how to construct unramified cyclic extensions of 2-power
degree ≥ 8; their ideas can be extended to fields F such that SCl(F ) = 1 (see [115]), and the construction
is feasible for F = Q and n = 8.

4.3 Scholz’s reciprocity law

Now we will study the question whether the unramified cyclic extensions constructed in Sect. 4.2 are
ramified at the infinite primes. In the special case F = Q, this has been done by Scholz [535], and as a
byproduct he found the reciprocity law that today bears his name. It turns out that something similar
can be achieved over fields with SCl(F ) = 1.

Let k/F be a quadratic extension, Ek the unit group of Ok, (·/·) and [·/·] the quadratic residue symbol
in F and k, respectively. If α ∈ F× and if p is a prime ideal in OF such that pOk = PP′ then it is easy
to see that [α/P] = (α/p). For a prime ideal p such that
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a) (ε/p) = +1 for every unit ε ∈ EF ;

b) p = PP′ splits in k/F ;

we define a symbol (Ek/p) by

(Ek/p) =

{
+1 if [η/P] = +1 for all η ∈ Ek,
−1 if [η/P] = −1 for some η ∈ Ek.

This symbol (Ek/p) does not depend on the choice of P because

[η/P][η/P′] = [ηη′/P] = (Nk/F η/p) = +1.

Now we can state

Proposition 4.3.1. Let F be a number field with SCl(F ) = 1, d � 0 a separant such that (2, d) = 1,
k = F (

√
d ), d = d1 ·d2 a C4-factorization of d into totally positive prime separants d1, d2, and let L/k be

the corresponding cyclic quartic extension of k which is unramified outside ∞. Moreover, let pi, i = 1, 2,
denote the prime ideal in OF such that pi | di, and let Ei be the unit group of ki = F (

√
di ). Then

(ε/p) = 1 for all units ε ∈ EF and all p | d, and the following assertions are equivalent:

i) L is totally real, i.e., L/k is unramified at ∞;

ii) the ray class number of O1 mod P2 is even, where P2 is a prime ideal above p2 in O1 = Ok1 ;

iii) (E1/p2) = +1, i.e., every unit in E1 is a quadratic residue mod P2.

Prop. 4.3.1 enables us to deduce a weak reciprocity law as a

Corollary 4.3.2. Under the assumptions of Prop. 4.3.1 we have (E1/p2) = (E2/p1).

Proof. Proof of Prop. 4.3.1 We want to prove that (ε/p) = 1 for all units ε ∈ EF ; to this end, assume
that p | d1. Our assumption (d, 2) = 1 guarantees that p does not ramify in F (

√
ε )/F , hence formula (4)

in [627], II §11, gives (ε
p

)
=
(d1, ε

p

)
.

Now p is the only ramified place in k1/F , and since units are norm residues at all unramified primes, the
product formula of the norm residue symbol shows

1 =
∏
q

(d1, ε

q

)
=
(d1, ε

p

)
=
(ε

p

)
.

i) ⇒ ii): The extension L/k1 has Galois group V4 and subfields K1, K
′
1 and K = F (

√
d1,
√
d2 ). If

L/k is unramified at ∞, then so are K1/k1 and K ′
1/k1. In the proof of Theor. 4.2.1 we have seen

that exactly one of the prime ideals P, P′ above p2, say P, ramifies in K1/k1: hence K1 is contained
in the ray class field mod Pf of k1 for some f ≥ 1. But (d, 2) = 1 guarantees tame ramification,
hence we have f = 1, and this is the claim.

ii) ⇒ i): Assume that the ray class number mod P in k1 is even; then there is a quadratic extension
K1/k1 which is unramified outside P, and since k1 has odd class number in the strict sense, P
is indeed ramified. If K1/k were normal, then P′ would also be ramified in K1/k, thus K1/k is
not normal. The normal closure L of a non-normal quartic field containing a quadratic subfield
is necessarily dihedral. L/k is unramified because diff (L/K) divides both diff (K1/k1) = P and
diff (K ′

1/k1) = P′; the cyclic quartic extension in L/F is L/k: if L/k2 were cyclic, L/K would
ramify above p1.
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ii) ⇐⇒ iii): The ray class number h(P) of O1 mod P = P2 is given by the formula

h(P) = h(F ) · Φ(P)

(E1 : E(1)
1 )

,

where Φ denotes Euler’s Phi-function in O1, and where E(1)
1 denotes the subgroup of units in E1

which are ≡ 1 mod P. We want to show that h(P) is even if and only if (E1/p2) = 1. To this end
we define a homomorphism ψ : E1 7−→ (O/PO)× =: RP by ψ(ε) = ε mod P and note that ψ has
kernel E(1)

1 = {ε ∈ E1 : ε ≡ 1 mod P}. Since RP is isomorphic to the multiplicative group of a
finite field, it is cyclic. Therefore the index (RP : ψ(E1)) is even if and only if ψ(ε) ≡ ξ2 mod P
for all units ε ∈ E1. This, together with the fact that RP has order Φ(P), shows that the ray class
number h(P) is even if and only if (ε/P) = 1 for all units ε ∈ E1. In fact, the exact sequence

1 −−−−→ E
(1)
1 −−−−→ E1 −−−−→ RP −−−−→ RP/ψ(E1) −−−−→ 1

shows that (RP : ψ(E1)) = Φ(P)/(E1 : E(1)
1 ).

Already the weak reciprocity formula of Cor. 4.3.2 contains Scholz’s reciprocity law (for a history on
the subject, see the survey of E. Lehmer [635]) as a special case:

Example 4.3.1. Scholz’s Reciprocity Law for F = Q Let p ≡ q ≡ 1 mod 4 be primes such that (p/q) = 1,
and let εp and εq denote the fundamental units in Q(

√
p ) and Q(

√
q ), respectively. Then (p) = pp′ in

Q(
√
q ) and (q) = qq′ in Q(

√
p ), and we have [εp/q] = [εq/p].

It is easily seen that [εp/q] does not depend on the choice of εp or q, so we usually write (εp/q) instead
of [εp/q].

Surprisingly, such an explicit form of Scholz reciprocity holds in general: assume that SCl(F ) = 1,
and let d1, d2 � 0 be prime separants; then a prime ideal p2 | d2 splits in O1 = Ok1 , i.e, p2O1 = P2P

′
2.

The key observation now is that the quadratic residue character [ε1/P2] of a unit ε1 ∈ E1 only depends
on η = N1ε1 (where N1 denotes the norm of k1/F ). More precisely:

1. [ε1/P2] does not depend on the choice of P: to see this, note that we have, directly from the
definition of the quadratic residue symbol, [α/P] = [α′/P′], and this shows that

[ε1/P2] · [ε1/P′
2] = [ε1/P2] · [ε′1/P2] = [N1ε1/P2] = (N1ε1/p2) = 1

because of Prop. 4.3.1.

2. Units in E1 with the same norm have the same quadratic residue character mod P2: to prove this
it is sufficient to show that [ε/P2] = 1 for all units ε ∈ E1 such that N1ε = 1. Hilbert’s Satz 90
says that Nε = 1 ⇐⇒ ε = ξσ−1 for some ξ ∈ k×1 . This shows that (ξ) is an ambigous ideal of
k1; but the only ramified ideal in k1/F is p, hence we must have (ξ) = a or (ξ) =

√
d1a for some

fractional ideal a in F . Obviously, a is principal, and we find that ε = ±υσ−1 for some unit υ ∈ E1.
But now [υ/P2] = [υ/P′

2] = [υσ/P2] shows that indeed [ε/P2] = 1 as claimed.

This allows us to associate characters X1, X2 on EF to every C4-factorization d = d1d2 into a pair of
prime separants d1, d2 � 0 as follows: for a unit η ∈ EF , choose a unit ε ∈ E1 such that N1ε = η (this
is always possible; see Ch. 3) and define X1(η) = [ε/P2].

Theorem 4.3.3. (Scholz’s Reciprocity Law) Let F be a number field such that SCl(F ) = 1, and suppose
that d = d1d2 is a C4-factorization of d into prime separants d1, d2 � 0. Then X1(η) = X2(η) for every
unit η ∈ EF . Moreover, we have Xj(η) = 1 if η is the norm of a unit from k = F (

√
d ).

Proof. Assume that η = Nk/F ε; since K/k is unramified and Cl2(k) is cyclic, ε is the norm of a unit in
EK , say ε = NKk

υ. Put ε1 = NK/k1υ; then N1ε1 = η = N1ε, hence (ε/p2) = X1(η) = (ε1/p2). But
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(ε1/p2) = +1, because ε1 is norm from K and p ramifies in K/k1. We have shown that η = Nk/F ε ⇒
X1(η) = 1. By symmetry, we also have X2(η) = 1.

Our next claim is that (EF : Nk/FEk) ≤ 2. To prove this, let C(2)
am denote the 2-Sylow subgroup of

the group of strongly ambiguous ideal classes of k; it is known that [627]

|C(2)
am| =

1
2
·
∏∞

e(p)
(EF : NEk)

,

where
∏∞ indicates that the product runs over all primes including the infinite ones. On the other

hand, there are at most (k(2)
gen : k) ambiguous ideal classes, where k(2)

gen denotes the maximal 2-extension
contained in the genus field kgen of k; since k(2)

gen = k(
√
d1 ), we find that |C(2)

am| ≤ 2. But now
∏∞

e(p) = 4,
because only p1 and p2 are ramified, hence we have (EF : Nk/FEk) ≤ 2 as claimed.

In case we have (EF : Nk/FEk) = 1, there is nothing left to prove, because then every unit is the
norm of a unit from Ek; assume therefore that (EF : Nk/F ) = 2, and let η ∈ EF \ Nk/FEk. If Theor.
4.3.3 is false, we must have X1(η) = −X2(η); but if X1(η) = 1, then (E1/p2) = +1, whereas X2(η) = −1
implies (E2/p1) = −1, and this contradicts Prop. 4.3.1.

Example 4.3.2. Let F = Q(
√

2 ), d1 = 7 + 2
√

2, d2 = 11 + 2
√

2, and ω = −1 +
√

2. We find
Q1 = (1

2 (7 + 2
√

2 +
√
d )), Q2 = (1

2 (11 + 2
√

2 +
√
d )), where pOk = Q2

j . Moreover we have the following
generators for the prime ideals Pj above pj in

k1 : P2 = (1 +
√

2 +
√

2
√
d1 ),
√
d1 ≡ 30 mod P2,

√
2 ≡ 51 mod P2;

k2 : P1 = (2 +
√
d2 ),
√
d2 ≡ −2 mod P1,

√
2 ≡ 17 mod P1.

Now we find

ε 1
2 (1 +

√
2 +
√
d1 ) 1

2 (3 +
√

2 +
√
d1 ) (3 +

√
d2 )/

√
2 (2

√
2 +
√
d2 )ω

η = Nε −1 ω +ω −1
Xj(η) +1 −1 −1 +1

This shows that X1(−1) = X2(−1) = 1, X1(ω) = X2(ω) = −1. Together with Theor. 4.4.1 below, this
explains why the 2-class field constructed in the example at the end of the previous section was totally
complex.

4.4 Governing Fields

Almost all of Scholz’s results in [535] can similarly be generalized to fields with SCl(F ) = 1; in particular
this is true for Scholz’s construction of the governing field (cf. [539]) of 8 | h+(pq):

Theorem 4.4.1. Let F be a field such that SCl(F ) = 1, k = F (
√
d ), and suppose that d = d1d2 for

prime separants d1, d2 � 0 such that (d, 2). Let Spl(K/F ) denote the set of prime ideals in OF which
split in K/F . Then

1. (d1/p2) = −1⇒ h+(k) = h(k) ≡ 2 mod 4, and EF = NEk;

2. (d1/p2) = +1⇒ (E1/p2) = (E2/p1), and we distinguish

2.1. (E1/p2) = −1 : then h+(k) = 2h(k) ≡ 4 mod 8 and (EF : NEk) = 2;

2.2. (E1/p2) = +1: then (d1/p2)4 = (d2/p1)4, and there exist two possibilities:

a) (d1/p2)4 = (d2/p1)4 = −1 :

then h+(k) = h(k) ≡ 4 mod 8 and EF = NEk;

b) (d1/p2)4 = (d2/p1)4 = +1 :
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then h+(k) ≡ 0 mod 8, the quartic cyclic unramified extension of k is real, and EF = NEk if
and only if the 2-class field k1 of k is real.

If we fix d1, we have in particular

4 | h+(k) ⇐⇒ p2 ∈ Spl(Ω+
4 (d1)/F ), where Ω+

4 (d1) = F (
√
EF ,
√
d1 );

4 | h(k) ⇐⇒ p2 ∈ Spl(Ω4(d1)/F ), where Ω4(d1) = F (
√
E1,
√
d1 );

8 | h+(k) ⇐⇒ p2 ∈ Spl(Ω+
8 (d1)/F ), where Ω+

8 (d1) = F (
√
E1,

4
√
d1 ).

We note in passing that the material of this section is related to some results of Hilbert [621], Satz
32, 33, on the quadratic reciprocity law in fields with odd class number.

4.5 Unramified Dihedral Extensions

The same methods used to construct unramified cyclic extensions in Sect. 4.2 allow us to prove

Theorem 4.5.1. Let F be a number field with odd class number, k/F a quadratic extension, and L/k
an unramified D4-extension such that L/F is normal. Then Gal (L/F ) ' C2 × D4, and there exists a
”D4-factorization” d = sep(k/F ) = d1d2 · d3 into separants such that

(i) (di, dj) | ∞ for i 6= j, and (d1, d2) = 1;

(ii) (d1/p2) = (d2/p1) = +1 for all prime ideals p1 | d1 and p2 | d2. Here

Moreover, L/k(
√
dj ) is cyclic for j = 3 and of type V4 for j = 1, 2.

If, on the other hand, k/F is a quadratic extension with separant d = sep(k/F ), and if d = d1d2 · d3

is a D4-factorization, then there is an α ∈ k(
√
d1 ) such that L = k(

√
d1,
√
d2,
√
α ) is a D4-extension

with the following properties:

1. L/k is unramified outside 2∞;

2. L/k(
√
d3 ) is cyclic;

3. L/F is normal with Galois group C2 ×D4.

If in addition SCl(F ) = 1, then we can find an extension L/k which is unramified (outside ∞).

The second part of Theor. 4.5.1 follows directly from our results in Sect. 4.2: in fact, if d = d1d2 · d3

is a D4-factorization, then d1 ·d2 is a C4-factorization of d1d2; the corresponding unramified C4-extension
L of F (

√
d1d2 ) lifts to an unramified D4-extension M = L(

√
d3 ) of k.

For the 2-groups occuring below, we will use the notation of [569]; the numbers in [569] coincide with
those in [576]. For example, G = 32.042 = Γ5a1 = D4 gD4 is the group Γ5a1 of order 32 in [569], G has
number 42 in [569] and [576], and G = D4 gD4 expresses the fact that G can be realized as a push-out
of two dihedral groups of order 8.

The assumption that L/F be normal is necessary in Theor. 4.5.1, as our next result shows:

Theorem 4.5.2. Let F be a number field with odd class number, k/F a quadratic extension, and L/k an
unramified D4-extension such that L/F is not normal. Let N denote the normal closure of L/F . Then
Gal (N/F ) ' 32.042 = Γ5a1 = D4 g D4, and Gal (N/k) ' 16.06 = Γ2a1 = C2 × D4. Moreover there
exists a factorization d = sep(k/F ) = d1d2d3d4 into separants such that

1. (di, dj) | ∞ for all i 6= j;

2. (d1/p2) = (d2/p1) = (d3/p4) = (d4/p3) = +1 for all pi | di;

3. (d1, d2) = (d3, d4) = 1.
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In this case, L is cyclic over k(
√
d1d2 ) and of type V4 over k(

√
d1d3 ) and k(

√
d1d4 ).

On the other hand, if d = d1d2d3d4 is a factorization of d = sep(k/F ) with these properties, then the
diophantine equations X2

j − djY 2
j − dj+1Z

2
j = 0 have non-trivial solutions (xj , yj , zj) ∈ F 3 for j = 1 and

j = 3. These solutions can be chosen in such a way that the square roots of α = x1 + y1
√
d1 and β =

x3 + y3
√
d3 generate the unramified cyclic quartic extensions of F (

√
d1d2 ) and F (

√
d3d4 ), respectively.

Then M = F (
√
d1,
√
d2,
√
d3,
√
d4,
√
α,
√
β) is an unramified extension of k with Gal (M/k) ' 32.034 =

Γ4a2 = D4 fD4 and Gal (M/F ) ' D4 ×D4. Its subfield

L = F

(√
d1d2,

√
d1d3,

√
d1d4,

√
2x1x3 + 2y1y3

√
d1d3 + 2z1z3

√
d2d4

)
is an unramified D4-extension of k such that N = L(

√
d1 ) is the normal closure of L/F . Moreover,

Gal (N/F ) ' Γ5a1.

An explicit example for Theor. 4.5.2 is d = −3 · 13 · 5 · 29; here Cl(k) ' (2, 2, 2, 7), and we find
α = 1

2 (−1 +
√

13 ), β = 7 + 2
√

5, and µ = −7 + 2
√

65 + 2
√
−87.

Remark 10. The conditions in Theor. 4.5.1 for the Legendre symbols (di/pj) coincide with those given
in Satz 2 of [147] (after renumbering), whereas those in Theor. 4.5.2 do not. In fact, Koch assumes that
the normal extension k̂/k which he is studying is actually normal over Q.

4.6 Unramified Quaternion Extensions

Theorem 4.6.1. Let F be a number field with odd class number, k/F a quadratic extension, and L/k
an unramified H8-extension such that L/F is normal. Then

i) Gal (L/F ) ' 16.8 = Γ2b = C4 gH8;

ii) there exists a ”H8-factorization” d = sep(k/F ) = d1d2d3 into separants such that

a) L is a quadratic extension of F (
√
d1,
√
d2,
√
d3 );

b) (di, dj) = 1 for i 6= j, and

c) (d1d2/p3) = (d2d3/p1) = (d3d1/p2) = +1 for all prime ideals pi | di.

iii) L is a D4-extension of F (
√
di ) for i = 1, 2, 3 and a (C2 × C4)-extension of F (

√
d1d2 ), F (

√
d2d3 ),

and F (
√
d3d1 ).

On the other hand, if k/F is a quadratic extension and d = sep(k/F ) = d1d2d3 is a H8-factorization,
then there exists an a ∈ OF such that (a, 2) = 1, a - d1d2, and such that the system of diophantine
equations

(∗∗)
d1X

2
1 − d2X

2
2 = −ad3X

2
3 (I)

Y 2
1 − d1Y

2
2 = aY 2

3 (II)
Z2

1 − d2Z
2
2 = −aZ2

3 (III)

has non-trivial solutions in OF . Let (x1, x2, x3) ∈ O3
F be a solution of (∗∗), let r ∈ F×, and put

µ = (x1

√
d1 + x2

√
d2 )(y1 + y2

√
d1 )(z1 + z2

√
d2 )r;

then L = F (
√
d1,
√
d2,
√
d3,
√
µ ) is an H8-extension of k, such that Gal (L/F ) ' 16.8. Moreover, we can

choose µ in such a way that L/k becomes unramified outside 2∞. If in addition SCl(F ) = 1, we can
make L/k unramified at all finite places.

Proposition 4.6.2. Let F be a number field with SCl(F ) = 1, and let d = d1d2d3 be the product of three
totally positive prime separants such that (d1, d2) = (d2, d3) = (d3, d1) = 1. If (di/pj) = −1 for all i 6= j,
then there exists an unramified H8-extension L of k = F (

√
d ) which is normal over F , and the following

assertions are equivalent:
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1. L is totally real;

2. the quartic subfield K of L/k has 2-class number h2(K) = 2;

3. (Ek : NK/kEK) = 1;

4. (E12/p3) = +1, where E12 denotes the unit group of F (
√
d1,
√
d2 ).

Similarly, L is a CM-field ⇐⇒ h2(K) = 1 ⇐⇒ (Ek : NK/kEK) = 1 ⇐⇒ (E12/p3) = −1. The
symmetry of the di implies the reciprocity law(E12

p3

)
=
(E23

p1

)
=
(E31

p2

)
.

In the special case F = Q, the reciprocity law given in [638] shows that in fact(E12

p3

)
=
(E23

p1

)
=
(E31

p2

)
= −

(d1d2

p3

)
4

(d2d3

p1

)
4

(d3d1

p2

)
4
.

If we know beforehand that a quadratic extension k of F admits an unramified H8-extension, then we
can construct it using Theor. 4.6.1 even if SCl(F ) 6= 1; the imaginary quadratic number field Q(

√
−195 ),

for example, posesses an unramified extension L such that Gal (L/k) ' H16; now let F = Q(
√
−3 ) and

k = F (
√

65 ). Then d = sep(k/F ) = 65 = 5(−1 + 2
√
−3 )(−1 − 2

√
−3 ) is an H8-factorization (from

this fact alone we are not allowed to conclude that there is an unramified H8-extension of k, because
SCl(F ) ' Z/2Z). Nevertheless we can put a = −1, d1 = −1 + 2

√
−3, d2 = −1− 2

√
−3, d3 = 5, find that

x1 = −1 + 2
√
−3, x2 = 3 +

√
−3, x3 = 1,

y1 = 1−
√
−3, y2 = 1, y3 = 1,

z1 = 1, z2 = 1, z3 = 1,

is a solution of (∗∗), and that a square root of

µ = (x1

√
d1 + x2

√
d2 )(y1 + y2

√
d1 ) ≡ 1 mod 4

generates the desired H8-extension of k.
As in the dihedral case above, we cannot drop the assumption that L/F be normal; a study similar

to the one for dihedral extensions shows that if L/k is a H8-extension such that L/F is not normal,
then the normal closure N of L/F has Galois group Gal (N/F ) ' 32.043 = Γ5a2 = D4 g H8. There
exists a factorization d = sep(k/F ) = d1d2d3d4 such that (d2d3d4/p1) = (d3d4d1/p2) = (d4d1d2/p3) =
(d1d2d3/p4) = +1 for all pi | di. The only discriminants > −12 000 of imaginary quadratic number fields
with this property are d = −7 480 = −11 · 5 · 8 · 17 and d = −7 995 = −3 · 13 · 5 · 41, and in both cases the
corresponding H8-extension can be constructed explicitly. The construction (even the existence of the
field) in the general case is still an open problem.

4.7 Non-abelian 2-groups of order 16

Theorem 4.7.1. Let F be a number field such that SCl(F ) = 1, and let k/F be a quadratic extension;
there exists a G-extension K/k which is unramified at the finite places and such that K/F is normal if
and only if there is a factorization d = sep(k/F ) = d1d2d3 into relatively prime separants such that the
conditions (4.1) are satisifed:

G (∗) Gal (K/F )
D4 (d1/p2) = (d2/p1) = 1 16.6
H8 (d1d2/p3) = (d2d3/p1) = (d3d1/p2) = 1 16.8
16.9 (d1/p2) = (d1/p3) = (d2/p1) = (d3/p1) = 1 32.033
16.10 (d1/p2) = (d2/p1) = (d1d2/p3) = (d3/p1) = (d3/p2) = 1 32.036
(4, 4) (di/pj) = 1 for all i 6= j 32.034

If (di/pj) = 1 for all i 6= j, there also exists an unramified extension L/k such that Gal (L/k) ' 32.018
and Gal (L/F ) ' 64.144.
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Example 4.7.1. Let k be an imaginary quadratic number field with discriminant d, and suppose that
d = d1d2d3 is a factorization of d into discriminants; the following table gives unramified G-extensions
L/k, where K = Q(

√
d1,
√
d2,
√
d3 ), for all 2-groups G occuring in Theor. 4.7.1:

G d d1 d2 d3 L

D4 −195 −3 13 5 K(
√
−1 + 2

√
−3 )

H8 −120 −3 5 8 K
(√

(2
√

2 +
√

5 )(2 +
√

5 )
)

16.09 −663 13 17 −3 K(
√
−1 + 2

√
−3,

√
−1 + 2

√
13 )

16.10 −580 5 29 −4 K(
√
−1 + 12

√
−1,

√
7 + 2

√
5 )

C4 × C4 −2379 −3 13 61 K(
√
−19 + 12

√
−3 ,

√
5 + 4

√
13 )

The unramified 32.018-extension of Q(
√
−2379 ) predicted by Theor. 4.7.1 is obtained by adjoining√

−1 + 2
√
−3 to the (C4 × C4)-extension L.

Remark 11. The group G = 32.019 = Γ2i does not occur as Gal (k2/k) for an imaginary quadratic
number field k. This follows at once from Theor. 4.7.1: let k1 and k2 be the Hilbert 2-class fields of k
and k1, respectively, and assume that Gal (k2/k) ' 32.019. Then k1 is an unramified (C4×C4)-extension
of k because G/G′ ' C4×C4. Theor. 4.7.1 implies the existence of an unramified 32.018-extension of k,
hence Lk2/k1 is abelian and unramified, and strictly bigger than k2: this contradicts the maximality of
the Hilbert class field (see 1.9.27). A similar result for q-class fields, q an odd prime, has recently been
obtained by Nomura (see Prop. 1.9.28).
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Chapter 5

Tables

5.1 Tables of Class Fields

disc k Cl(k) K h(K)
−3 1 k1 = k 1
−4 1 k1 = k 1
−7 1 k1 = k 1
−8 1 k1 = k 1
−11 1 k1 = k 1
−15 2 k1 = k(

√
5 ) 1

−19 1 k1 = k 1
−20 2 k1 = k(

√
5 ) 1

−23 3 k1 = k(x), x3 − x+ 1 1
−24 2 k1 = k(

√
2 ) 1

−31 3 k1 = k(x), x3 + x+ 1 1
−35 2 k1 = k(

√
5 ) 1

−39 4 k1 = k(
√
−2 + 2

√
13 ) 1

−40 2 k1 = k(
√

5 ) 1
−43 1 k1 = k 1
−47 5 k1 = k(x), x5 − 2x4 + 2x3 − x2 + 1 1
−51 2 k1 = k(

√
17 ) 1

−52 2 k1 = k(
√

13 ) 1
−55 4 k1 = k(

√
3 + 2

√
5 ) 1

−56 4 k1 = k(
√
−1 + 2

√
2 ) 1

−59 3 k1 = k(x), x3 + 2x+ 1 1
−67 1 k1 = k 1
−68 4 k1 = k(

√
4 +
√

17 ) 1
−71 7 k1 = k(x), x7 − x6 − x5 + x4 − x3 − x2 + 2x+ 1 1
−79 5 k1 = k(x), x5 − 3x4 + 2x3 − x2 + x− 1 1
−83 3 k1 = k(x), x3 + x2 + x+ 2 1
−84 2 · 2 k1 = k(i,

√
−3 ) 1

−87 6 k1 = k(
√

29, x), x3 + 2x2 − x+ 1 1
−88 2 k1 = k(

√
2 ) 1

−91 2 k1 = k(
√

13 ) 1

−95 8 k1 = k
(√√

5 + (1−
√

5)
√
−1 + 2

√
5
)

1
−103 5 k1 = k(x), x5 − 2x4 + 3x3 − 3x2 + x+ 1 1
−104 6 k1 = k(

√
13, x), x3 − x+ 2 1

−107 3 k1 = k(x), x3 − x2 + 3x− 2 1

−111 8 k1 = k
(√
− 1

2 (9 +
√

37) + 2
√

11 + 2
√

37
)

1
−115 2 k1 = k(

√
5 ) 3

k2 = k1(x), x3 − x+ 1 h2 = 1
−116 6 k1 = k(

√
29, x), x3 + x2 + 2 1

−119 10 k1 = k(
√

17, x), x5 − 3x4 + x3 + x− 1 1
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disc k Cl(k) K h(K)
−120 2 · 2 k1 = k(

√
2,
√

5 ) 2

k2 = k1
(√

(2
√

2 +
√

5 )(2 +
√

5 )
)

h2 = 1
−123 2 k1 = k(

√
41 ) 1

−127 5 k1 = k(x), x5 − 3x4 − x3 + 2x2 + x− 1 1
−131 5 k1 = k(x), x5 − 5x4 + 3x3 + x2 − x− 1 1
−132 2 · 2 k1 = k(i,

√
−3 ) 1

−136 4 k1 = k(
√

6 + 2
√

17 ) 1
−139 3 k1 = k(x), x3 − x2 + x+ 2 1
−143 10 k1 = k(

√
13, x), x5 − 3x4 + x2 + x− 1 1

−148 2 k1 = k(i) 1
−151 7 k1 = k(x), x7 − 3x6 − x5 − 3x4 − x2 − x− 1 1
−152 6 k1 = k(

√
2, x), x3 + x2 − 2x+ 2 1

−155 4 k1 = k(
√
−7 + 4

√
5 ) 3

k2 = k1(x), x3 + x+ 1 h2 = 1
−159 10 k1 = k(

√
−3, x), x5 − 4x4 − 2x3 − x2 − 2x− 1 1

−163 1 k1 = k 1
−164 8 k1 = k

(√
2 + 2i+

√
5 + 4i

)
1

−167 11 k1 = k(x), x11 + x10 + 5x9 + 4x8 + 10x7 + 6x6

+ 11x5 + 7x4 + 9x3 + 4x2 + 2x− 1 1
−168 2 · 2 k1 = k(

√
−2,
√
−3 ) 1

−179 5 k1 = k(x), x5 − 6x4 + x3 − 5x2 + 2x− 1 1

−183 8 k1 = k
(√
− 5

2 (5 +
√
−3 ) + 2

√
7 + 2

√
−3
)

1

−184 4 k1 = k(
√
−3 + 4

√
2 ) 3

k2 = k1(x), x3 − x+ 1 1
−187 2 k1 = k(

√
−11 ) 1

−191 13 k1 = k(x), x13 − 6x12 + 10x11 − 16x10 + 22x9 − 19x8

+ 11x7 − 5x6 − x5 + 5x4 − 4x3 + 2x− 1 1
−195 2 · 2 k1 = k(

√
−3,
√

5 ) 4
k2 = k1(x, y), x2 = −1 + 2

√
−3, x′2 = −1− 2

√
−3

y2 = (x3 + (3 +
√
−3 )x′)(1−

√
−3 + x′) 1

−199 9 k1 = k(x), x9 − 5x8 + 3x7 − 3x6 − 3x3 − x− 1 1
or k(y, z), y3 + 4y2 + y + 1, z3 + yz2 + (y2 + 1)z − y

−203 4 k1 = k(
√
−7,

√
−1 + 2

√
−7 ) 1

−211 3 k1 = k(x), x3 + 3x2 + x+ 2
−212 6 k1 = k(i, x), x3 + x2 + 4x+ 2 1
−215 14 k1 = k(

√
5, x), x7 − 5x6 + x5 − 6x4 + 5x3 − 3x2 + 3x− 1 1

−219 4 k1 = k(
√
−3,

√
5 + 4

√
−3 ) 1

−223 7 k1 = k(x), x7 − 5x6 + x4 − 4x3 − x2 − 1 1
−227 5 k1 = k(x) = x, x5 − 9x4 + 9x3 − 9x2 + 5x− 1 1
−228 2 · 2 k1 = k(i,

√
−3 ) 1

−231 2 · 6 k1 = k(
√
−3,
√
−7, x), x3 − 4x2 + 5x+ 1 1

−232 2 k1 = k(
√
−2 ) 1

−235 2 k1 = k(
√

5 ) 5
k2 = k(x), x5 − x3 − 2x2 − x− 1 1

−239 15 k1 = k(x, y), x3 − x+ 3 = 0,
y5 − 2y4 − 5y3 − 4y2 − 2y − 1 1
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disc k Cl(k) K h(K)
−244 6 k1 = k(i, x), x3 + 2x2 − 3x+ 2 1
−247 6 k1 = k(

√
13, x), x3 − 3x2 + 4x+ 1 1

−248 8 k1 = k
(√√

2 +
√

1 + 4
√

2 (1 +
√

2)
)

3
k2 = k1(y), y3 + y + 1 1

−251 7 k1 = k(x), x7 − 9x6 − 2x5 + 4x4 + 2x3 − 6x2 − 5x− 1 1
−255 2 · 6 k1 = k(

√
−3,
√

5, x), x3 + x2 + 3 2

k2 = k1
(√

(
√

17 + 2
√

5)(4−
√

17)
)

1

−259 4 k1 = k(
√

3 + 2
√
−7 ) 1

−260 2 · 4 k1 = k(
√

5,
√
−7 + 4i ) 2

k2 = k1(x), x2 = (1− 2i)
√
−7 + 4i− 2i

√
−7 + 4i 1

−263 13 k1 = k(x), x13 − 8x12 + 16x11 − 27x10 + 38x9

− 36x8 + 22x7 − 12x6 + 13x5 − 19x4

+ 21x3 − 15x2 + 6x− 1 1
−267 2 k1 = k(

√
−3 ) 1

−271 11 k1 = k(x), x11 − 5x10 − 6x9 − 5x8 + 3x7+
+ 6x6 + 3x5 − 3x4 − x3 − x2 − 1 1

−276 2 · 4 k1 = k(
√
−23,

√
5 + 4

√
3 ) 3

k2 = k1(x), x3 − x+ 1 1
−280 2 · 2 k1 = k(

√
2,
√

5 ) 4
k2 = k1(y, z), y2 = −1 + 2

√
2 h2 = 1

−283 3 k1 = k(x), x3 + 4x− 1 2 · 2
k2 = k1(y), y4 − y − 1 h2 = 2
k3 = k2(z), z2 = −3 + 4y2 − 4y3 h3 = 1

−287 14 k1 = k(
√
−7, x),

x7 − 5x6 − 6x5 − 12x4 − 12x3 − 10x2 − 4x− 1 1
−291 4 k1 = k(

√
−7 + 4

√
−3 ) 1

−292 4 k1 = k(
√
−3 + 8i ) 1

−295 8 k1 = k
(√

1
2 (1 + 3

√
5) + 2

√
11 + 6

√
5
)

3
k2 = k(z), z3 + 2z + 1 = 0 h2 = 1

−296 10 k1 = k(
√
−2, x), x5 − 29x4 − 34x3 − 6x2 + 5x− 1 1

−299 8 k1 = k
(√

3− 2
√

13 + (6 + 2
√

13 )
√
−43 + 12

√
13,
)

1
−303 10 k1 = k(

√
−3, x), x5 − 10x4 − 5x3 + 5x2 + x− 1 1

−307 3 k1 = k(x), x3 − x2 + 3x+ 2 1
−308 2 · 4 k1 = k(i,

√
11,
√

13 + 4
√

11 ) 1
−311 19 k1 = k(x), x19 − 4x18 − 16x17 − 37x16 − 42x15

− 38x14 − 4x13 + 10x12 + 25x11

+ 18x10 + 9x9 + x8 − 10x7 − 13x6

− 14x5 − 8x4 − 5x3 − 2x2 − x− 1 1
−312 2 · 2 k1 = k(

√
2,
√
−3 ) 4

k2 = k1(
√
−1 + 2

√
−3 , α), α =? 1

−319 10 k1 = k(
√

29, x), x5 − 6x4 − 3x3 + x2 − x− 1 1
−323 4 k1 = k(

√
7 + 2

√
17 ) 1

−327 12 k1 = k(
√
−1 + 6

√
−3 , x), x3 − 4x2 + 3x− 1 1

−328 4 k1 = k(
√
−3 + 4

√
−2 ) 1
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disc k Cl(k) K h(K)
−331 3 k1 = k(x), x3 − 4x2 + 8x− 9 2 · 2

k2 = k1(y), y4 − 2y2 − 3y − 1 h2 = 2
k3 = k2(z), z2 + 3 + 4y − 4y2 h3 = 1

−335 18 k1 = k(
√

5, x, y), x3 − 2x2 + 5x− 5,
y3 − (2x2 − x+ 7)y2 − (x2 − x+ 4) 1

−339 6 k1 = k(
√
−3, x), x3 + 2x2 + 3 1

−340 2 · 2 k1 = k(
√

5,
√

17 ) 4

k2 = k1(
√

(2 + 2i+
√

1 + 4i)(1 + 2i) ) h2 = 1
−344 10 k1 = k(

√
−2, x), x5 − 43x4 + 8x4 − 19x2 − 9x− 1 1

−347 5 k1 = k(x), x5 − 13x4 − 27x3 − 21x2 − 7x− 1 1
−355 4 k1 = k(

√
−3 + 16

√
5 ) 7

k2 = k1(x), x7 − x6 − x5 + x4 − x3 − x2 + 2x+ 1 1
−356 12 k1 = k(

√
5 + 8i, x), x3 + 3x2 − 4x+ 2 1

−359 19 k1 = k(x), x19 − 14x18 + 59x17 − 113x16 + 91x15 + 19x14

− 90x13 + 51x12 + 2x11 − 5x10 + 9x9 − 30x8 + 22x7

+ 7x6 − 14x5 + 3x4 + 2x3 − 2x2 + 2x− 1 1
−367 9 k1 = k(x, y), x3 − 2x2 + 3x− 5,

y3 − xy2 + (x2 − x)y + x− 2 1

−371 8 k1 = k
(√

1
2 (−13 +

√
53) + (14− 2

√
53)
√

29 + 4
√

53
)

1
−372 2 · 2 k1 = k(i,

√
−3 ) 3

k2 = k1(x), x3 + x+ 1 1

−376 8 k1 = k
(√
−3 + (8− 4

√
2)
√

9 + 8
√

2
)

5
k2 = k1(x), x5 − x3 − 2x2 − x− 1 h2 = 1

−379 3 k1 = k(x), x3 + x2 + x+ 4 1
−383 17 k1 = k(x), x17 − 6x16 − 24x15 − 42x14 − 31x13 − 23x12 − 7x11

− x10 − 4x9 − 11x8 − 7x7 − 13x6 − x5 + x3 + x2 + x− 1 1
−388 4 k1 = k(

√
9 + 4i) 1

−391 14 k1 = k(
√

17, x),
x7 − 9x6 + 10x5 − 14x4 + 8x3 − 6x2 + 2x− 1 3

k2 = k1(y), y3 − y + 1 h2 = 1

−395 8 k1 = k
(√
−1 + (4 + 2

√
5)
√

1 + 4
√

5
)

5
k2 = k1(x), x5 − 3x4 + 2x3 − x2 + x− 1 1

−399 2 · 8 k1 = k
(√
−7,

√
− 1

2 (15 +
√

133) + 2
√

23 + 2
√

133
)

1
−403 2 k1 = k(

√
13 ) 3

k2 = k1(x), x3 + x+ 1 h2 = 1
−404 14 k1 = k(i, x), P (x) =? 1
−407 16 k1 = k(x, y), x2 = 1

2 (11 +
√

37) + 2
√

7 + 2
√

37 , y2 =? 1
−408 2 · 2 k1 = k(

√
2,
√

17 ) 2
k2 = k1(

√
−5 + 2

√
2 ) h2 = 1

−411 6 k1 = k(
√
−3, x), x3 + x2 + 5x+ 2 1

−415 10 k1 = k(
√

5, x), x5 − 13x4 + 9x3 + x− 1 3
k2 = k1(y), y3 + y2 + y + 2 h2 = 1

−419 9 k1 = k(x, y), x3 + 3x2 − x+ 2, P (y) =? 1
−420 2 · 2 · 2 k1 = k(i,

√
−3,
√

5 ) 2 · 2
k2 = k1

(√
(4i−

√
5)(2 +

√
5) ,
√

(2
√
−5 +

√
7)(8− 3

√
7 )
)

1
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disc k Gal (k1/k) Gal (k2/k) Gal (k3/k)
−115 C2 D3

−120 C2 × C2 H8

−155 C4 H12

−184 C4 H12

−195 C2 × C2 H16

−235 C2 D5

−248 C8 Λ24

−255 C2 × C6 C3 ×H8

−260 C2 × C4 M16

−276 C2 × C4 C2 ×H12

−280 C2 × C2 H16

−283 C3 A4 Ã4

−295 C8 Λ24

−299 C8 Λ24

−312 C2 × C2 H16

−331 C3 A4 Ã4

−340 C2 × C2 SD16

−355 C4 H28

−372 C2 × C2 C2 ×D3

−376 C8 Λ40

−391 C14 C7 ×D3

−395 C8 Λ40

−403 C2 D3

−408 C2 × C2 D4

−415 C10 C5 ×D3

−420 C2 × C2 × C2 32.040

The groups involved are:

Cn cyclic group of order n,

Dn dihedral group of order 2n,

Hn quaternionic group of order n,

SDn semi-dihedral group of order n,

A4 alternating group of order 12,

Ã4 its covering group of order 24,

M4n = 〈x, y : xm = y2 = −1, yxy−1 = −x〉,

Λ8n = 〈x, y : x4m = y8 = 1, xm = y2, yxy−1 = x2m − 1〉,

32.040 the group with this number in some published tables of 2-groups, for example Senior and Hall

where −1 denotes a central involution.
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5.2 Tables of 2-Groups

In the columns SG(Γ) and FG(Γ) we list the subgroups of index 2 and the factor groups of order #Γ/2,
respectively.

1. Groups of order 8

Γ TW HS Γ′ Γ/Γ′ Z(Γ) Γ/Z(Γ) SG(Γ) FG(Γ) M(Γ)
(8) 8.001 1 (8) (8) 1 (4) (4) 1

(2, 4) 8.002 1 (2, 4) (2, 4) 1 (2, 2), (4)2 (2, 2), (4)2 (2)
(2, 2, 2) 8.003 1 (2, 2, 2) (2, 2, 2) 1 (2, 2)7 (2, 2)7 (2, 2, 2)
D4 8.004 Γ2a1 (2) (2, 2) (2) (2, 2) (2, 2)2, (4) (2, 2) (2)
H8 8.005 Γ2a2 (2) (2, 2) (2) (2, 2) (4)3 (2, 2) 1

2. Non-Abelian Groups of order 16

Γ TW HS Γ′ Γ/Γ′ Z(Γ) Γ/Z(Γ)
C2 ×D4 16.006 Γ2a1 C2 (2, 2, 2) (2, 2) (2, 2)
C2 ×H8 16.007 Γ2a2 C2 (2, 2, 2) (2, 2) (2, 2)
D4 g C4 16.008 Γ2b C2 (2, 2, 2) C4 (2, 2)
D4 f C4 16.009 Γ2c1 C2 (2, 4) (2, 2) (2, 2)
H8 f C4 16.010 Γ2c2 C2 (2, 4) (2, 2) (2, 2)
M16 16.011 Γ2d C2 (2, 4) C4 (2, 2)
D8 16.012 Γ3a1 C4 (2, 2) C2 D4

SD16 16.013 Γ3a2 C4 (2, 2) C2 D4

H16 16.014 Γ3a3 C4 (2, 2) C2 D4

Γ SG(Γ) FG(Γ) M(Γ)
C2 ×D4 (2, 2, 2)2, (2, 4), D4

4 (2, 2, 2), D2
4 (2, 2, 2)

C2 ×H8 (2, 4)3,H4
8 (2, 2, 2),H2

8 (2, 2)
D4 g C4 (2, 4)3, D3

4,H8 (2, 2, 2) (2, 2)
D4 f C4 (2, 2, 2), (2, 4)2 (2, 4), D2

4 (2, 2)
H8 f C4 (2, 4)3 (2, 4), D4,H8 C2

M16 (2, 4), C2
8 (2, 4) 1

D8 C8, D
2
4 D4 C2

SD16 C8, D4,H8 D4 1
H16 C8,H

2
8 D4 1
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−p ) où p est un
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[144] A. Fröhlich, A remark on the class field tower of Q(
√̀
m), J. London Math. Soc. 37 (1962), 193–194

[145] J. Browkin, On the generalized class field tower, Bull. Acad. Pol. Sci. ser. sci. math. astr. phys. 27
(1963), 143–145

[146] J. Browkin, Examples of maximal 3-extensions with two ramified places, Izv. Akad. Nauk. 27 (1963),
613–620
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[304] E. Hecke, Über nicht-reguläre Primzahlen und den Fermatschen Satz, Nachr. Akad. Wiss. Göttingen
(1910), 420–424

[305] H.S. Vandiver, On the first factor of the class number of a cyclotomic field, Bull. Amer. Mth. Soc.
25 (1919), 458–461

[306] T. Takagi, Zur Theorie des Kreiskörpers, J. Reine Angew. Math. 157 (1927), 246–255

93
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[332] H. Kisilevsky, The Rédei-Reichardt-theorem – a new proof, Selected Topics on Ternary Forms and
Norms, Sem. Number Theory, Calif. Instit. Tech., Pasadena (1974/75)
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√
d ) et k(

√
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[352] R. Bölling, Zur Klassenzahl nicht galoisscher Körper in Diedererweiterungen über Q mit besonderer
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Zürich, Preprint 1981

[438] F.-P. Heider, Zur Kapitulation der Idealklassen von algebraischen Zahlkörpern, Tagungsber. Ober-
wolfach 35/81 (1981)

[439] B. Schmithals, Kapitulation der Idealklassen in zyklischen Erweiterungen und Einheiten in
Diederkörpern vom Grad 2`, Tagungsber. Oberwolfach 35/81 (1981)

[440] B. Schmithals, Zur Kapitulation der Idealklassen in zyklischen Zahlkörpererweiterungen und Ein-
heitenstruktur in Diederkörpern vom Grad 2`, Diss. Univ. Dortmund (1981)

[441] F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen
Erweiterungen, J. Reine Angew. Math. 336 (1982), 1–25

99



[442] B. Nebelung, Zum Kapitulationsproblem in unverzweigten Erweiterungen, Staatsarbeit Köln 1983
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(A. Fröhlich, ed.), Acad. Press, London, 1977, pp. 355–375

[599] H. M. Stark, Hilbert’s twelfth problem and L-series, Bull. Amer. Math. Soc. 83 (1977), 1972–1074

[600] H. M. Stark, Values of L-functions at s = 1. IV. First derivatives at s = 0, Adv. Math. 35 (1980),
197–235

[601] J. Tate, On Stark’s conjectures on the behavior of L(s, χ) at s = 0, J. Fac. Sci. Univ. Tokyo, Sect.
I A 28 (1981), 963–978

[602] T. Chinburg, Stark’s conjecture for L-functions with first-order zeroes at s = 0, Adv. Math. 48
(1983), 82–113

[603] J. Sands, Abelian Fields and the Brumer-Stark conjecture, Comp. Math. 53 (1984), 337–346

[604] J. Sands, Galois groups of exponent 2 and the Brumer-Stark conjecture, J. Reine Angew. Math.
349 (1984), 129–135

[605] J. Tate, Les conjectures de Stark sur les fonctions L d’Artin en s = 0, Progress in Math. (J. Coates,
S. Helgason, eds), Birkhäuser, 1984
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